
Dipl.-Ing. Mag. Marcus Hassler

Linguistically Enhanced Information Retrieval
of Structured Documents

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

Studium der Angewandten Informatik

Alpen-Adria Universität Klagenfurt

Fakultät für Technische Wissenschaften

1. Begutachter
O. Univ.-Prof. Dipl.-Ing. Mag. Dr. Roland Mittermeir
Alpen-Adria Universität Klagenfurt / Institut für Informatik-Systeme

2. Begutachter
Ao. Univ.-Prof. Mag. Dr. Günther Fliedl
Alpen-Adria Universität Klagenfurt / Institut für Angewandte Informatik

March/2009

Ehrenwörtliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende wissenschaftliche Arbeit selbstständig angefertigt
und die mit ihr unmittelbar verbundenen Tätigkeiten selbst erbracht habe. Ich erkläre weiters, dass ich
keine anderen als die angegebenen Hilfsmittel benutzt habe. Alle aus gedruckten, ungedruckten oder
dem Internet im Wortlaut oder im wesentlichen Inhalt übernommenen Formulierungen und Konzepte
sind gemäß den Regeln für wissenschaftliche Arbeiten zitiert und durch Fußnoten bzw. durch andere
genaue Quellenangaben gekennzeichnet.

Die während des Arbeitsvorganges gewährte Unterstützung einschließlich signifikanter Betreuungs-
hinweise ist vollständig angegeben.

Die wissenschaftliche Arbeit ist noch keiner anderen Prüfungsbehörde vorgelegt worden. Diese Arbeit
wurde in gedruckter und elektronischer Form abgegeben. Ich bestätige, dass der Inhalt der digitalen
Version vollständig mit dem der gedruckten Version übereinstimmt.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben wird.

Dipl.-Ing. Mag. Marcus Hassler Klagenfurt, 3. March 2009

iii

Acknowledgements

Over the years, this work consumed much energy, patience, and brainpower not only of
myself but also of many others (= POWs). Without that helping hands and good ghosts, this
project would never have come to existence, not to mention its completion. I would like to
express my deepest gratitude to all of them (= compensation for loss).

First of all I have to thank Prof. Roland T. Mittermeir (= boss no. 1), who provided me not
only with a job (= food) but also with his knowledge, wisdom, and farsightedness (= ideas).
Although he had always a great deal to do, his door was never locked for discussions and
counseling. I always looked up to him because of his righteousness, tolerance, and kindness.

Much thanks deserves Prof. Günther Fliedl (= boss no. 2), who encouraged me more than
once that I am doing the right things the right way. In numerous discussions I gained deep
insights into natural language processing and computational linguistics (= more ideas). His
continuous guidance and open-mindedness left its clear mark on this thesis. Besides that, he
also gave me a job (= more food).

I am as well deeply indebted to Prof. Abdelhamid Bouchachia for his professional advice
on several chapters. With his help most of the English words could be tamed to form proper
and readable sentences (= eloquence).

Thanks to my colleagues at the Department of Informatics Systems who have always
been a great support to me. Their assistance, company, humor, and addiction to coffee
(= fun) created a friendly working environment. Special thanks go to my friend Dr. Karl
Wiggisser, who – before he cold-blooded left me behind alone in the office – had been a
valuable conversationalist to exchange views with (= more fun).

I bow deeply in respect to the honorary gentlemen of the hekkas guild, which constantly
refreshed my hope about hekkn is the best thing one can do to save the world. Their way
of life, ideology, and taunting were one reason for me to finish this work. Interestingly, best
ideas always came up in the monthly sauna subcommittees... (= hekkas.com)

0/

|

/ \

v

Since not all people I want to thank are fluent in English, I will now switch to Deutsch,
damit mich auch wirklich alle Angesprochenen verstehen:

An dieser Stelle möchte ich mich bei meinen Eltern Ursula und Herbert für Ihre jahrelange
Unterstützung und Motivation bedanken (= faith). Jedoch sei angemerkt, dass meine Mutter
sich gegen Ende der Arbeit nur noch auf monatlicher Basis nach dem jeweiligen Ist-Stand
erkundigte.

Auch möchte ich Linde und Hans recht herzlich dafür danken, dass Sie mich in den letzten
Monaten meiner Fertigstellung mit offenen Armen bei sich aufnahmen und beherbergten (=
shelter).

Gesondert jedenfalls muss der Dank an meine Lebensgefährtin Jutta (= big boss) entrichtet
werden. Hier sind Dankesworte alleine voraussichtlich nicht ausreichend, hier werden wohl
Taten folgen müssen. Im Gegensatz zu meiner Mutter hat sich Ihre Abtastfrequenz meines
Ist-Standes gegen Ende hin jedoch eher indirekt proportional verhalten (= patience).

Equipped with a single big boss remaining, lots of experiences with former bosses, a pool
of new ideas, a well-fed body, eloquence, fun stuff, a wonderful website, faith, shelter, and
patience, the course is now set for a prosperous future.

vi

Abstract

This research sheds light on structured document retrieval and its challenges. In this paradigm,
documents are no longer perceived as ‘flat’ content containers. Rather, their content is
structured into a hierarchy of various levels of granularity. By considering parts of documents
instead of its entirety, the users’ query can be answered more precisely and with better
focus. This implies that traditional retrieval methods have to be enhanced by exploiting
the structure as additional source of information. However, the structural dimension of
documents demands for tailored models that incorporate structure in the representation and
retrieval process.

The aim of this thesis is to develop a retrieval system that is capable of satisfying complex
user queries containing both, constraints on the content and structure. Documents are first
transformed into a generic XML document format that optimally supports retrieval tasks.
It consists of three structural elements. These are the document, its (sub-)sections, and its
fragments (smallest retrievable units). Each element includes a metadata and content part.
A cascade of natural language processing steps analyzes the textual contents and extracts
relevant index terms. The analysis involves extended tokenization, supporting token types and
multi-tokens, and filtering of functional, content-related, and domain-specific stopwords. The
single-term index is supplemented by multi-term indices of composite nouns, named entities,
formulaic speech, and full forms of acronyms. These patterns plus additional processing
rules relevant to information retrieval (as applied during tokenization) are extracted from the
documents automatically. As a consequence of splitting a single document into numerous
parts according to its structure, mechanisms, e.g. classification and clustering, to organize
these parts are needed. Being a user-centered approach, classification automatically assigns
them to pre-defined classes that may be created, populated, and navigated on demand.
Clustering partitions document components that are not pre-classified into groups using
similarity measures (e.g., edit distance). It is used to speed up retrieval by organizing clusters
into a hierarchy. During search, clusters (and descendant clusters) consisting of irrelevant
documents to the query are simply ignored.

In order to validate the concepts developed within (the theoretical part of) this thesis, a
prototype called X-DOSE – XML-Document Oriented Search Engine – has been implemented.
Based on a client-server architecture, the system handles indexing, retrieval, classification,

vii

and clustering tasks. X-DOSE has been evaluated using the XML documents of the INEX
collection. The empirical results indicate the appropriateness and importance of the various
stages of processing proposed in the context of this dissertation. Moreover, other aspects have
been investigated such as the pros and cons of natural language processing steps involved,
enhancement of query languages for structured documents, and hybrid similarity measures.

Keywords: Information Retrieval, Structured Document Retrieval, Search Engines, XML,
Natural Language Processing, Text Mining, XML Classification, XML Clustering, Document
Mining, Retrieval Evaluation, X-DOSE

viii

Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit dem Auffinden von Informationen in
strukturierten Dokumenten (Structured Document Retrieval) und den damit verbundenen
Herausforderungen. Dokumente werden nicht als Hüllen für ‘flache’ Inhalte verstanden.
Vielmehr bestehen sie aus einer hierarchischen Anordnung von Inhalten auf verschiedenen
Abstraktionsebenen. Da bestimmte Teile von Dokumenten meist genauere Antworten auf
Benutzeranfragen beinhalten, müssen traditionelle Methoden des Information Retrievals
angepasst werden, um zusätzliche Strukturinformation einzubeziehen. Diese strukturelle
Dimension verlangt nach speziell dafür zugeschnittenen Modellen, die die Struktur eines
Dokuments sowohl bei der Repräsentation als auch beim Retrievalprozess berücksichtigen.

Das Ziel der vorliegenden Dissertation ist die Entwicklung eines Softwaresystems zur
Beantwortung komplexer Benutzerabfragen, die sowohl inhaltliche als auch strukturelle
Bedingungen enthalten. In einem ersten Schritt werden zu durchsuchende Dokumente in ein
generisches XML Dokumentformat transformiert, das für Retrievalzwecke optimiert ist. Es
besteht aus drei Grundelementen für die Dokument-, (Unter-)Kaptitel-, und Fragmentebene
(kleinste beziehbare Informationseinheit). Jedes dieser Elemente beinhaltet einen in sich
geschlossenen Metadaten- und Inhaltsdatenblock. Der Inhalt, vorliegend in Form von natür-
lichsprachlichen Texten, wird von einer Sequenz hintereinander geschalteter ‘Natural Lan-
guage Processing’ Komponenten verarbeitet. Inhaltstragende Wörter werden extrahiert und in
den Index aufgenommen. Zu den zentralen Analyseschritten zählen einerseits die erweiterte
Tokenisierung, die sowohl eine Typisierung von Tokens als auch Zusammenschlüsse von
Einzeltokens zu Multitokens durchführt, und andererseits die Filterung von Stoppwörtern
auf funktionaler, inhaltsbezogener und domänenspezifischer Ebene. Der so entstehende
Einzelwortindex wird in weiterer Folge durch Mehrwortindizes ergänzt, die Eigennamen,
Nominalkomposita, Redewendungen und ausgeschriebene Akronyme inkludieren. Diese
Textmuster werden, zusammen mit sprachspezifischen Regeln (wie etwa bei der Tokenisierung
verwendet) automatisch aus vorhandenen Dokumenten gewonnen.

Die Aufgliederung eines Dokuments in eine Vielzahl kleinerer Einheiten führt notge-
drungen zu einer Explosion an zu verarbeitenden Dokumententeilen. Um dieser Situation
entgegen zu wirken, sind Mechanismen wie Klassifikation und Clustering notwendig. Sie
arbeiten große Datenmengen auf und (re-)organisieren sie für spätere Zugriffe. Aufgabe der

ix

Klassifikation ist die Zuteilung von Dokumentteilen in vordefinierte Kategorien, die vom
Benutzer selbst angelegt, ergänzt und für den Zweck der Navigation genutzt werden. Clus-
tering hingegen stellt eine weitere Möglichkeit der automatisierten Organisation dar. Dabei
werden Kategorien, in diesem Zusammenhang Cluster genannt, durch Zusammenfassen
ähnlicher Dokumentteile vom System selbst definiert. Dies geschieht unter Zuhilfenahme
von Ähnlichkeitsmetriken wie etwa der ‘edit distance’. Durch die hierarchische Verknüpfung
dieser Cluster miteinander entsteht eine Baumstruktur, die effektiv zur Beschleunigung des
Retrievalprozesses genutzt wird. Cluster (und untergeordnete Cluster), die lediglich aus nicht
relevanten Dokumentteilen bestehen, werden von der Suche ausgeschlossen.

Um die theoretischen Aussagen dieser Arbeit validieren zu können, wurde der X-DOSE
(XML-Document Oriented Search Engine) Prototyp entwickelt. Das System basiert auf einer
Client-Server Architektur und verarbeitet eingehende Anfragen zur Indizierung, Abfrage,
Klassifikation und Clustering. Die Effizienz und Effektivität von X-DOSE wurde anhand von
Echtdaten (XML Dokumente des INEX Textkorpus) sowie von genormten Aufgabenstellungen
beurteilt und anschließend mit jenen von ähnlichen Systemen verglichen. Die empirischen
Ergebnisse bestätigen die Relevanz und Korrektheit der in dieser Arbeit vorgeschlagenen
Vorgangsweise. Darüber hinaus wurden auch andere Erkenntnisse, wie beispielsweise die
Vor- und Nachteile einzelner Textanalyseschritte, Erweiterungen von Abfragesprachen für
strukturierte Dokumente und hybride Ähnlichkeitsmaße, gewonnen.

x

Contents

1 Introduction 1

1.1 Problem Identification and Motivations . 4
1.2 Overview of the Approach . 6
1.3 Thesis Outline . 8

2 Structured Document Retrieval: An Overview 11

2.1 Introduction . 11
2.2 XML Document Format . 14
2.3 Related Work . 17

2.3.1 Database and Information Retrieval Perspective 17
2.3.2 Fragment and Passage Retrieval . 18
2.3.3 Retrieval Models . 19
2.3.4 Retrieval Units . 22
2.3.5 Query Languages . 23
2.3.6 Performance . 24

2.4 Index Objects . 24
2.5 Content Representation and Weighing . 26
2.6 Querying and Ranking . 29
2.7 Query Language . 31
2.8 Result Presentation and Browsing . 32
2.9 Retrieval Evaluation . 35

2.9.1 Corpus . 36
2.9.2 Topics . 37
2.9.3 Metrics . 38

2.10 Summary . 39

3 Document Format, Storage, and Representation 41

3.1 Introduction . 41
3.2 Related Work . 43

3.2.1 Typing of Structural Entities . 43

xi

3.2.2 Storage . 43
3.3 The Most Simple XML Document Format . 45

3.3.1 Structure . 46
3.3.2 Metadata . 49
3.3.3 Content . 49
3.3.4 Typing of Structural Elements . 50

3.4 Storage . 52
3.5 Document Representation . 57

3.5.1 Static Term Space . 58
3.5.2 Dynamic Term Spaces . 58
3.5.3 An Example: Static versus Dynamic Term Spaces 60

3.6 Summary . 61

4 Natural Language Text Representation 63

4.1 Introduction . 63
4.2 Related Work . 65

4.2.1 Character Sets . 65
4.2.2 Tokenization . 65
4.2.3 Tagging Systems . 67
4.2.4 Stopword Filtering . 69
4.2.5 Stemming Systems . 70

4.3 Natural Language Oddities . 72
4.3.1 Difficulties Concerning Sentence Delimiters 73
4.3.2 Abbreviation and Acronym Detection . 75
4.3.3 Numbers . 76
4.3.4 Special Formats . 76
4.3.5 Apostrophes . 77
4.3.6 Hyphenations . 78
4.3.7 Slashes and Other Special Characters . 80

4.4 Extended Tokenization . 80
4.4.1 Definitions of Token Concepts . 83
4.4.2 The Procedure of Token Typing . 84
4.4.3 JavaTok . 88

4.5 Tagging . 91
4.6 Stopword Filtering . 93

4.6.1 The Multi-Layered Stopword Model . 95
4.6.2 The Stopword Extraction Process . 97
4.6.3 Identification of Functional Stopwords 101

xii

4.6.4 Identification of Content-Related Stopwords 102
4.6.5 Identification of Domain-Specific Stopwords 106
4.6.6 Extending the Stopword List . 106
4.6.7 Coverage of the Generated Stopword List 107

4.7 Stemming . 110
4.8 Summary . 112

5 Generation of Natural Language Resources Supporting Information Retrieval 113

5.1 Introduction . 113
5.2 Experimental Setting and Procedure . 116
5.3 Definition of Basic Token Types for Single-Tokens 117

5.3.1 Alphabetic Tokens (ALPHA) . 117
5.3.2 Numeric Tokens (NUMERIC) . 119
5.3.3 Entity Tokens (ENTITY) . 120

5.4 Definition of Complex Token Types for Multi-Tokens 120
5.5 Automatic Rule Extraction . 122
5.6 Generating Single-Term Dictionaries . 125
5.7 Generating Multi-Term Dictionaries via Concordances 127

5.7.1 Pattern Extraction Suited for Composite Nouns 128
5.7.2 Pattern Extraction Suited for Named Entities 135
5.7.3 Pattern Extraction Suited for Formulaic Speech 137

5.8 Acronym Extraction and Expansion . 140
5.9 Summary . 144

6 Classification of XML Documents 147

6.1 Introduction . 147
6.2 Related Work . 149
6.3 Tree Matching via Edit Distance . 152

6.3.1 Structure Matching . 155
6.3.2 Content Matching . 159

6.4 Tree Matching via Content Matrix . 162
6.5 Overview of k-NN . 164
6.6 Evaluation . 166

6.6.1 Experiment I - How Does k Affect the Accuracy? 168
6.6.2 Experiment II - How Does the Training Data Affect the Accuracy? . . . 169
6.6.3 Experiment III - How Does the CAS Setting Affect the Accuracy? . . . 171
6.6.4 Comparison . 172

6.7 Future Extensions . 173

xiii

6.8 Summary . 174

7 Clustering of XML Documents 175

7.1 Introduction . 175
7.2 Related Work . 176
7.3 Supertree Representation . 178

7.3.1 Creation of a Supertree . 180
7.3.2 Merging of Supertrees . 180

7.4 Similarity Computation . 182
7.4.1 Comparing Ordered Document Trees and Supertrees 182
7.4.2 Comparing Unordered Document Trees and Supertrees 189
7.4.3 Comparing Supertrees . 190

7.5 Clustering Approaches . 191
7.5.1 Overview of k-Means . 192
7.5.2 Overview of Hierarchical Clustering . 192

7.6 Evaluation . 194
7.6.1 Measures . 195
7.6.2 Experiment I - How Does the Parameter βparent Affect the Purity and

Entropy? . 196
7.6.3 Experiment II - How Does k Affect the Purity and Entropy? 198
7.6.4 Experiment III - How Does the Training Data Affect the Purity and

Entropy? . 199
7.6.5 Experiment IV - How Does CAS Setting Affect the Purity and Entropy? 200
7.6.6 Comparison . 202

7.7 Conclusion . 203

8 Overview of the X-DOSE System 205

8.1 Related Work . 205
8.1.1 HyREX . 205
8.1.2 HySpirit . 207
8.1.3 JuruXML . 208
8.1.4 XXL Search Engine . 208
8.1.5 K2 Search Engine from Verity . 209
8.1.6 Cheshire II . 209
8.1.7 PADRE . 210

8.2 Architecture of X-DOSE . 211
8.3 The Client . 212

8.3.1 Index Request . 212

xiv

8.3.2 Query Formulation . 212
8.3.3 Result Display . 217
8.3.4 Class Manager . 220

8.4 The Server . 222
8.4.1 Indexing . 223
8.4.2 Retrieval . 227
8.4.3 Classification . 231
8.4.4 Direct Data Requests . 232

8.5 Future Extensions . 232
8.6 Summary . 233

9 Evaluation of X-DOSE 235

9.1 Experimental Settings . 235
9.1.1 Document Repository . 235
9.1.2 Topics . 237
9.1.3 Retrieval Tasks . 238
9.1.4 Evaluation Metrics . 239

9.2 Results . 241
9.2.1 Experiment I - Single-Term Index Performance 242
9.2.2 Experiment II - Multi-Term Index Performance 250
9.2.3 Experiment III - Combined Single-Term and Multi-Term Index Perfor-

mance . 252
9.2.4 Experiment IV - Content and Structure 252
9.2.5 Experiment V - Static Term Space versus Dynamic Term Spaces 255
9.2.6 Experiment VI - The Effect of Content Importance ci 256
9.2.7 Experiment VII - The Effect of the Generality Factor g f 256
9.2.8 Experiment VIII - INEX 2005 Comparison 260
9.2.9 Experiment IX - Clustering Performance 263
9.2.10 Experiments not Conducted . 265

9.3 Summary . 266

10 Conclusion 267

10.1 Concerns . 267
10.2 Contributions . 268

10.2.1 Theoretical Contributions . 269
10.2.2 Tool Aspects . 270

10.3 Lessons Learned . 272
10.4 Future Research Directions . 273

xv

A Appendix 275

A.1 Extracted Stopword Lists . 275
A.2 Extracted Patterns Suited for Composite Nouns 278
A.3 Extracted Patterns Suited for Named Entities . 282
A.4 Extracted Patterns Suited for Formulaic Speech 286
A.5 Extracted Acronyms . 290
A.6 INEX Topics . 294

A.6.1 CO Topics . 294
A.6.2 COS Topics . 295
A.6.3 CAS Topics . 296

A.7 Evaluation Results - nxCG Performance of INEX Topics 297
A.7.1 Experiment I - Single-Term Index Performance 297
A.7.2 Experiment II - Multi-Term Index Performance 299
A.7.3 Experiment III - Combined Single-Term and Multi-Term Index Perfor-

mance . 299
A.7.4 Experiment IV - Content and Structure 300
A.7.5 Experiment VI - The Effect of Content Importance ci 301
A.7.6 Experiment VII - The Effect of the Generality Factor g f 302
A.7.7 Experiment VIII - INEX 2005 Comparison 303

xvi

List of Figures

1.1 The process of information retrieval . 2

2.1 XML representation as an ordered tree . 16

2.2 Structured document retrieval using Bayesian networks 20

2.3 Example XML document tree with disjoint index objects 25

2.4 Automatic identification of disjoint indexing units 26

2.5 Propagation of term weights . 28

2.6 Query matching in structured documents . 30

2.7 Query analysis with template matching . 33

2.8 XML tree and its TreeMap . 34

2.9 Result presentation with Partial TreeMaps . 34

2.10 Result presentation with TextBars . 34

3.1 Inheritance hierarchy on data types . 43

3.2 Example of a transformed XML document . 47

3.3 Expanded example of a transformed XML document 48

3.4 Structured metadata example . 49

3.5 Hierarchical metadata types . 51

3.6 Content types . 53

3.7 Transformed XML document with pre and post identifiers 54

3.8 Initial document and query . 60

3.9 Static versus dynamic term spaces . 61

4.1 Natural language processing sequence . 64

4.2 A sample decision tree . 68

4.3 The task of text preparation and processing . 82

4.4 Basic token types . 85

4.5 Example rule for punctuation mark splitting . 86

4.6 Tokenization rules . 87

4.7 The architecture of JavaTok . 89

xvii

4.8 Sample JavaTok outputs . 90
4.9 Tagging improvements through Extended Tokenization 91
4.10 Multi-layered stopword model I . 95
4.11 Multi-layered stopword model II . 96
4.12 Top ranked INEX stopwords using q2 . 99
4.13 Comparison of different ranking criteria . 100
4.14 Frequency distribution of linguistic categories in functional stopwords 103
4.15 Frequency distribution of linguistic categories in content-related stopwords . . 105
4.16 Frequency distribution of linguistic categories in domain-specific stopwords . 107
4.17 Frequency distribution of all linguistic stopword categories 109
4.18 Final stopword coverage . 111

5.1 Information extraction and text mining tasks . 115
5.2 Using stopword filtering on multi-terms . 130
5.3 Cumulative filtering of linguistic stopword categories 131
5.4 Using stopword filtering on multi-terms (minimum of three letters per term) . 132
5.5 Cumulative filtering of linguistic stopword categories (minimum of three letters

per term) . 133
5.6 Extracted acronym patterns . 141

6.1 Document authoring operations . 149
6.2 Tree Edit Distance . 154
6.3 Tree Alignment . 154
6.4 Tree inclusion . 154
6.5 Basic tree edit operations and edit script . 156
6.6 Recursive tree edit operations and edit script . 157
6.7 Content-based tree edit operations and edit script 160
6.8 Tree edit distance algorithm matrix . 161
6.9 Content matrix match . 165
6.10 k-Nearest Neighborhood classification . 166
6.11 Effect of k on the accuracy . 169
6.12 Effect of the training data on the accuracy . 170
6.13 Effect of CAS on the accuracy . 172

7.1 Excerpt of a supertree . 179
7.2 Supertree creation . 181
7.3 Merging two supertrees . 182
7.4 Parameters of structural similarity . 184
7.5 Comparing document nodes to supertree nodes 185

xviii

7.6 Similarities of documents and the supertree constructed in Figure 7.2f 187
7.7 Depth considerations of comparing documents and a supertree 188
7.8 Ordered vs. unordered supertree . 189
7.9 Comparison of two document-related supertree nodes 190
7.10 Hierarchical clustering . 193
7.11 Effect of βparent on the purity and entropy (m-db-s-0) 197
7.12 Effect of k on the purity and entropy (m-db-s-0) 199
7.13 Effect of the training data on the purity and entropy (m-db-s-0) 200
7.14 Effect of CAS on the purity and entropy (m-db-cs-1) 201
7.15 Effect of CAS on the purity and entropy (m-db-cs-2) 202

8.1 XML document tree and corresponding indexing objects [85] 206
8.2 Architecture of X-DOSE . 211
8.3 Architecture of the client . 212
8.4 Index interface of the client . 213
8.5 Keyword query interface of the client . 214
8.6 Free text query interface of the client . 214
8.7 XOR query interface of the client . 215
8.8 Result types . 218
8.9 Result display of the client . 218
8.10 Result document browser of the client . 219
8.11 Class manager of the client . 220
8.12 Class browser of the client . 221
8.13 Classification result browser of the client . 221
8.14 Architecture of the server . 222
8.15 The DataCollector . 224
8.16 The DataMapper . 224
8.17 The DataStorer . 225
8.18 Conceptual database schema . 225
8.19 The DataIndexer . 226
8.20 Result computation . 229

9.1 Normalization function rvnorm of nxCG . 241
9.2 Tokenizer performance . 244
9.3 Tagger performance . 245
9.4 Extractor performance . 247
9.5 Stemmer performance . 248
9.6 Stopword filtering performance . 249

xix

9.7 Multi-term index performance . 251
9.8 Combined single-term and multi-term index performance 253
9.9 Strict nxCG Performance . 254
9.10 Retrieval times of static and dynamic term spaces 256
9.11 Strict nxCG Performance of ci . 258
9.12 Strict nxCG Performance of g f . 259
9.13 Strict nxCG Performance at INEX 2005 . 261
9.14 Retrieval times of clustered document components 265

A.1 Tokenizer performance . 297
A.2 Tagger performance . 297
A.3 Extractor performance . 298
A.4 Stemmer performance . 298
A.5 Stopword filtering performance . 298
A.6 Multi-term index performance . 299
A.7 Combined single-term and multi-term index performance 299
A.8 Performance of CO topics . 300
A.9 Performance of COS topics . 300
A.10 Performance of SSCAS topics . 300
A.11 CO.Thorough performance of ci . 301
A.12 CO.Focused performance of ci . 301
A.13 COS.Thorough performance of ci . 301
A.14 COS.Focused performance of ci . 302
A.15 SSCAS performance of ci . 302
A.16 COS.Thorough performance of g f . 302
A.17 COS.Focused performance of g f . 303
A.18 SSCAS performance of g f . 303
A.19 CO.Thorough performance at INEX 2005 . 303
A.20 CO.Focused performance at INEX 2005 . 304
A.21 COS.Thorough performance at INEX 2005 . 304
A.22 COS.Focused performance at INEX 2005 . 304
A.23 SSCAS performance at INEX 2005 . 304

xx

List of Tables

2.1 Development of INEX . 36

3.1 Semantics of XPath axes . 44

3.2 Supported metadata information . 49

3.3 Relational entries for the structure . 55

3.4 Relational entries for the content . 55

3.5 Relational entries for metadata (section level) . 56

3.6 Similarities using static and dynamic term spaces 61

4.1 Examples of (irregular) usage of sentence delimiters 73

4.2 Examples of abbreviations and acronyms . 75

4.3 Examples of number occurrences in texts . 76

4.4 Examples of phone number formats . 77

4.5 Examples of special formats . 77

4.6 Examples of apostrophe usage . 77

4.7 Examples of hyphenation usage . 79

4.8 Examples of other special characters in tokens 80

4.9 Examples of multi-tokens . 83

4.10 The process of assigning part-of-speech tags . 93

4.11 Example for an English stopword list . 94

4.12 List of functional stopwords . 103

4.13 List of content-related stopwords . 105

4.14 List of domain-specific stopwords . 106

4.15 List of additional stopwords . 108

4.16 Additional stopwords of external stopword lists 110

5.1 COMMON alphabetic token types (26) . 118

5.2 ACRONYM alphabetic token types (15) . 118

5.3 SPECIAL alphabetic token types (8) . 119

5.4 PLAIN numeric token types (6) . 119

xxi

5.5 FORMAT numeric token types (13) . 119
5.6 SPECIAL numeric token types (1) . 120
5.7 WWW Entity Token Types (3) . 120
5.8 Top 10 context rules for plain numbers . 123
5.9 Top 10 context rules for international country codes 124
5.10 Examples of incorrect abbreviation patterns . 126
5.11 Extracted abbreviations . 127
5.12 Top 5 patterns suited for composite nouns . 134
5.13 Number of unique patterns suited for composite nouns 134
5.14 Top 5 patterns suited for named entities . 136
5.15 Number of unique patterns suited for named entities 136
5.16 Number of unfiltered formulaic speech . 137
5.17 Top-ranked unfiltered formulaic speech . 138
5.18 Top 5 patterns suited for formulaic speech . 139
5.19 Number of unique patterns suited for formulaic speech 139
5.20 Number of unique extracted acronyms . 141
5.21 Examples of incorrectly identified acronyms applying strategy S1 142
5.22 Top 5 extracted acronyms (Pattern I) . 143
5.23 Top 5 extracted acronyms (Pattern II) . 144

6.1 Overview of change detection algorithms and properties [200] 153
6.2 Comparison of tree edit distance and content matrix 164
6.3 Structure-Only corpora . 167
6.4 Content-and-Structure corpora . 167
6.5 Effect of k on the accuracy (Equation 6.14) . 169
6.6 Effect of the training data on the accuracy . 170
6.7 Effect of CAS on the accuracy . 171
6.8 Classification Comparison for m-db-s-0 . 173

7.1 Structure-Only corpora . 195
7.2 Content-and-Structure corpora . 195
7.3 Evaluation results for the parameter βparent . 197
7.4 Evaluation results for the parameter k . 198
7.5 Evaluation results for the training size parameter 199
7.6 Evaluation results for the αstruct parameter (m-db-cs-1) 200
7.7 Evaluation results for the αstruct parameter (m-db-cs-2) 201
7.8 Comparison of the INEX 2005 evaluation results I 203
7.9 Comparison of the INEX 2005 evaluation results II 203

xxii

8.1 Different semantics of keywords . 216
8.2 Single-term indices maintained by the system 227
8.3 Multi-term indices maintained by the system . 227

9.1 Document repository statistics . 236
9.2 Single-term indices maintained by the system 242
9.3 nxCG of the CO.Thorough task (single-terms) 243
9.4 Multi-term indices maintained by the system . 250
9.5 nxCG of the CO.Thorough task (multi-terms) 250
9.6 nxCG of the CO.Thorough task (single-terms and multi-terms) 252
9.7 nxCG of CO, COS, and SSCAS . 253
9.8 Static term space versus dynamic term spaces 255
9.9 Impact of content importance ci . 257
9.10 Impact of the generality factor g f . 259
9.11 Progress of the X-DOSE development . 260
9.12 Top-10 INEX 2005 systems (CO.Thorough) . 262
9.13 Top-10 INEX 2005 systems (CO.Focused) . 263
9.14 Top-10 INEX 2005 systems (COS.Thorough) . 263
9.15 Top-10 INEX 2005 systems (COS.Focused) . 263
9.16 Top-10 INEX 2005 systems (SSCAS) . 264
9.17 Best results of X-DOSE . 264

A.1 Final list of functional stopwords (English, INEX) 275
A.2 Final list of content-related stopwords (English, INEX) 276
A.3 Final list of domain-specific stopwords (English, INEX) 277
A.4 Top 24 extracted composite noun suited patterns of length two 278
A.5 Top 24 extracted composite noun suited patterns of length three 279
A.6 Top 24 extracted composite noun suited patterns of length four 279
A.7 Top 24 extracted composite noun suited patterns of length five 280
A.8 Top 24 extracted composite noun suited patterns of length six 280
A.9 Top 24 extracted composite noun suited patterns of length seven 281
A.10 Top 24 extracted named entity suited patterns of length two 282
A.11 Top 24 extracted named entity suited patterns of length three 283
A.12 Top 24 extracted named entity suited patterns of length four 283
A.13 Top 24 extracted named entity suited patterns of length five 284
A.14 Top 24 extracted named entity suited patterns of length six 284
A.15 Top 24 extracted named entity suited patterns of length seven 285
A.16 Top 24 extracted formulaic speech suited patterns of length two 286

xxiii

A.17 Top 24 extracted formulaic speech suited patterns of length three 287
A.18 Top 24 extracted formulaic speech suited patterns of length four 287
A.19 Top 24 extracted formulaic speech suited patterns of length five 288
A.20 Top 24 extracted formulaic speech suited patterns of length six 288
A.21 Top 24 extracted formulaic speech suited patterns of length seven 289
A.22 Top 24 extracted acronyms of length two . 290
A.23 Top 24 extracted acronyms of length three . 291
A.24 Top 24 extracted acronyms of length four . 291
A.25 Top 24 extracted acronyms of length five . 292
A.26 Top 24 extracted acronyms of length six . 292
A.27 Top 13 extracted acronyms of length seven . 293
A.28 CO Topics used at INEX 2005 . 294
A.29 COS Topics used at INEX 2005 . 295
A.30 CAS Topics used at INEX 2005 . 296

xxiv

List of Listings

2.1 XML example code . 16
2.2 XOR query example . 32
2.3 INEX topic example . 38

5.1 Example rule correcting sentence ends . 121

8.1 XOR query example . 213
8.2 XOR query example . 228

xxv

List of Algorithms

4.1 Typing of tokens . 86

6.1 Tree Edit Distance algorithm . 158
6.2 Content Matrix Distance algorithm . 163
6.3 Classification via the k-NN algorithm . 166

7.1 Clustering via the k-Means algorithm . 192

xxvii

List of Acronyms and Abbreviations

AST Abstract Syntax Tree

BEP Best Entry Points

CAS Content-And-Structure
CO Content-Only
COS Content Only + Structure
CSIRO Commonwealth Scientific and Industrial Research Organisation
CSV Comma Separated Value

DTD Document Type Definition

HIS Hyperwave Information Server
HTML HyperText Markup Language
HyREX Hyper-media Retrieval Engine for XML
HySpirit HYpermedia System with Probabilistic Inference for the Retrieval of Infor-

maTion

IEEE Institute of Electrical and Electronics Engineers
INEX INitiative for the Evaluation of XML Retrieval
IR Information Retrieval

MathML Mathematical Markup Language
MS MicroSoft
MUC Message Understanding Conference

NEXI Narrowed Extended Xpath I
NLP Natural Language Processing

PADRE PArallel Document Retrieval Engine
PDF Portable Document Format

xxix

POS Part-Of-Speech

RMI Remote Method Invocation
RSV Retrieval Status Value

SDR Structured Document Retrieval
SQL Structured Query Language
STTS Stuttgart-Tübingen TagSet

TEI Text Encoding Initiative
TnT Trigrams’n’Tags

URL Uniform Resource Locator

VQL Verity Query Language
VSM Vector Space Model

X-DOSE XML-Document Oriented Search Engine
X-RAI XML Retrieval Assessment Interface
xCG eXtended Cumulated Gain
XIRQL XML IR Query Language
XML eXtensible Markup Language
XOR XML Oriented Retrieval language
XSLT eXtensible Stylesheet Language Transformation
XXL fleXible XML search Language

xxx

1

Chapter 1 Science must begin with myths,
and with the criticism of myths.

Karl Popper

Introduction

Over the past several years the amount of available online documents grew rapidly. Reposito-
ries like Wikipedia1 or the IEEE digital library2 provide a huge source of information which is
constantly increasing and continually changing. To manage these data loads, automatic mech-
anisms for searching and organizing are indispensable, demanding sophisticated methods to
represent, store, organize, and retrieve information from these sources. Therefore, methods
from the fields of Information Retrieval (IR) [246, 21] and document mining [119, 160] have
been adapted to meet these requirements.

Traditional information retrieval is concerned with unstructured documents. From a
structural point of view these systems operate on a ‘flat’ document structure, neglecting
any kind of internal document organization (e.g., chapters, sections) and content distinction
(e.g., texts, figures, tables). The whole content of a document is treated as a single piece
of information which is represented by a single object (i.e., weighed feature vector). As a
result, the retrieval process triggered by a user query ends up with a ranked list of documents
corresponding to the query terms they contain (see Figure 1.1). However, often a user is more
interested in a specific piece of information that is only part of a document. For instance,
information needs may range from a set of sections of a book to a single figure with a certain
caption. Retrieving the whole book at once does not satisfy the users interest because the
coverage of the full document is usually too broad, leading to further focused search and
browse within the document. The danger here is to miss documents containing satisfying
information, because the overall similarity of (rather long) documents might be too low given
a specific request for information. The following scenario sketches this problem:

Assume there is a collection of 1.000.000 documents available. Within this set there is a
short newspaper article (∼100 words) dealing about the recently discovered black hole that
is nearest to earth, entitled ‘Nearest Black Hole found!’. Another document is written by
Stephen Hawking about phenomena in the universe called ‘Black Holes and Baby Universes

1http://www.wikipedia.org (16.02.2008)
2http://www.computer.org/portal/site/csdl/index.jsp (16.02.2008)

1

2 1 Introduction

document collection user query

comparison
mechanism

ranked results

document collection

comparison

ranked resultsuser query

Figure 1.1: The process of information retrieval

and Other Essays’. The length of this document is about 50.000 words, where chapter eleven
(∼4.000 words) describes black holes in detail, containing figures and tables that explain
the anatomy of black holes. In order to search the collection, a search engine (e.g., google)
analyzes all documents and offers a keyword-based query interface. A user who is interested
in the general nature and functioning of black holes might enter the search terms ‘black hole
physics functioning’. As a result the system returns a list of documents. Within this result
the newspaper article is probably ranked as one of the top ten matches, whereas Stephen
Hawking’s book is located at the very end of the list. Why would that be the case? Because
the estimated one hundred words of the newspaper contains twice the terms ‘black hole’,
on average 2

100 . In contrast, the terms ‘black hole’ are mentioned two hundred times in the
chapter of the book, on average 200

50.000 = 2
500 . As a consequence, the book is ranked3 much

lower than the newspaper article although the query terms occur more frequently in the
book. Would chapter eleven be treated separately as a unit of about 4.000 terms, the average
occurrence of ‘black hole’ in the chapter 200

4.000 = 2
40 exceeds that of the newspaper article by

far. Thus, the book chapter itself would be ranked higher than the newspaper article.
Structured Document Retrieval (SDR) suggests a solution to this problem by including

structural information inherent in documents to improve the results of search engines. The
goal is to retrieve not only complete documents, but also parts of documents that are relevant
to the given user query. These parts are explicitly defined by the logical structure of the
document (e.g., document, chapter, section, paragraph, figure). Thus, the content of relevant
parts irrespectively of their granularity is returned. In this context, the idea is to adapt
and apply mechanisms from traditional information retrieval along with extra source of

3For the sake of illustration relative term frequencies are used instead of applying any standard weighing
formula.

1

3

knowledge mainly of structural nature. Such additional structural information assists the
retrieval process in three ways:

� It enables structure-aware experts to express very specific queries, including explicit
constraints on the content and structure.

� It allows to achieve highly focused search results without the need of further search and
browse activities by the users.

� It reduces the amount of data that has to be searched by ignoring unwanted structural
elements (e.g., no figures, no tables, only paragraphs) and documents not fulfilling
structural constraints.

In many cases structural information is already included in documents and can be (semi-)
automatically extracted from these sources: For instance, HTML [6] webpages contain tags like
<h1>, <h2>, <p>, . LATEX [7] sources contain markup such as section, subsection, figure,
table. MS-Word [10] and PDF [8] documents support heading1, paragraph, embedded image

formatting. However, these formats mix up structure and layout information. To cope with
that problem, the eXtensible Markup Language (XML) [4] came into existence. XML offers an
appropriate format to represent hierarchically organized knowledge within semi-structured
text documents. XML schemata [11] and the former Document Type Definition (DTD) [5]
provide a stable framework for defining a valid structure of XML documents. This allows
to establish a standard to uniformly access information emanating from different sources.
Since most structured document retrieval systems operate on XML documents, structured
document retrieval and XML retrieval are used synonymously.

Whereas classical information retrieval treats documents as atomic units, XML suggests
a tree-like view. The root node represents the entry point to the document. The content of
the document is (mainly) located at the leaf nodes of the tree. Inner nodes are understood
as intermediate nodes in between the root and the leaf nodes. For example, consider a
<document> node (root node) with several <section> nodes (inner nodes), where each
section consists of multiple <paragraph> nodes (leaf nodes). From this point of view an XML
document can be seen as a structured set of XML components or XML elements, where each
component is accessible via a unique path starting at the root node.

Besides the information retrieval discipline, document mining becomes more and more an
issue in processing large information repositories. Automatic grouping of similar documents
or parts of documents is able to enhance the performance in both regards, computational
complexity and retrieval quality. Therefore, document classification and document clustering
mechanisms need to be adapted to fit the paradigm of hierarchically structured documents.

This chapter sketches the main challenges of structured document retrieval and discusses
various aspects pertaining to XML retrieval. In line of these challenges, issues of representation,
storage, retrieval, and organization of structured documents are covered. A brief overview of
the structure of this work concludes the chapter.

4 1 Introduction

1.1 Problem Identification and Motivations

In addition to traditional information retrieval requirements, SDR systems face several new
challenges inherent in structured documents only. Due to the internet, a real flood of quite
diverse document formats (e.g., HTML, XML, PDF) became widely accepted. Also, the ways
of structuring documents themselves have been evolving independently. As a consequence,
XML documents of different sources are highly heterogenous due to their multiform structure.
Till now, no standards and not even guidelines are available that conveniently describe
document structures. Often, documents come without any schema specification, so possible
(sub)structures can therefore only be intuitively guessed. In order to process XML documents
efficiently without being too restrictive, retrieval systems have to consider these structural
specificities.

Having solved the problem of heterogeneity, the kind of storage has to be decided. In
this context not only the content but also the structure and metadata of XML documents
have to be considered in indexing and searching. The element hierarchy has to be retained,
supporting fast access to document parts as well as to sets of parts (i.e., document subtrees).
Several proposals for storing structured documents have been made, ranging from relational
databases to native object-oriented XML databases. However, for the sake of structured
document retrieval all of these proposals have to be adjusted to find a balance between
functionality and performance [153].

Representation of the content and structure of documents strongly relies on the storage
mechanisms. Since XML implements a hierarchical structure, the content is mostly (but not
necessarily) restricted to the leaf nodes. The content of an inner node is recursively derived
from the contents of its descendant nodes. For the indexing procedure, the level of granularity
is defined implicitly by the document structure itself. During retrieval, the granularity of
the result elements stands for a challenge. For instance, if a section and a paragraph within
this section are both relevant to a query, which of them should be returned to the user – the
section, the paragraph, or both? Yet, a user searching for information about an author may
not be satisfied by returned components referring to the authors’ name only. Thus, the target
components may differ from the components returned. Clearly, ranking based on relevance of
individual components has to take the inclusion relationship and possibly the explicit user’s
preference into account. One strategy is to return the so-called Best Entry Points (BEP) [151]
serving as starting points for further document browsing activities. Related to the granularity
aspect is the context of XML components. A paragraph might be relevant to a query because
of its preceding and succeeding paragraphs only. The same paragraph in another context may
be completely irrelevant. Thus, context, even being not included in the answer directly, has to
be accounted for.

1

1.1 Problem Identification and Motivations 5

Retrieval systems often operate in highly dynamic environments where documents are
constantly added, removed, and altered during runtime. Therefore, the indexing process has
to be fast and the calculated indices have to be kept stable. Corpus-based weighing techniques
such as the inverse document frequency of the vector space model (described in Section 2.3.3)
need adaptations to avoid constant re-computations of millions of representations each time a
document changes.

In order to retrieve XML components that are relevant to a query, proper representations
of both, the query content and the components’ contents, are essential. Much work on Natural
Language Processing (NLP) has already been carried out in the field of traditional information
retrieval to enhance the quality of textual representations. However, in the context of flat
document retrieval NLP methods have shown only minor effects on the retrieval quality but
have had a high impact on the (computational) complexity. With structured documents, the
portions of textual content are generally much smaller (e.g., paragraphs). This fragmentation
offers new possibilities to apply NLP techniques that improve, extend, and refine indexing
and matching procedures of short text passages. Statistically motivated patterns (e.g., multi-
terms such as composite nouns or named entities) can be effectively used to make content
representations more meaningful and matching more precise. Text mining provides methods
that extract valuable patterns from large amounts of text automatically.

A major benefit of exploiting structured documents is that users are able to express very
specific information needs. For that purpose, SDR systems use query languages that support
formulations of complex queries containing combinations of structure and content constraints.
Initially, existing query languages were extended to handle structural information. Then,
new query languages dedicated to SDR were developed. Very often, users must express
their information need explicitly. In addition to the query language, users need to know
the underlying structure of the target documents. This may be easy for domain experts, but
not for general users. Another difficulty is that most of these languages are quite complex,
making it hard to apply them directly [233]. Newer approaches rely on graphical interfaces
that assist users to formulate their queries. The query is generated automatically by the
interface avoiding incorrect syntax and semantic errors.

Once a query is formulated, the system computes the set of relevant XML components.
The retrieval process consists of matching, ranking, and filtering of document components.
While in traditional information retrieval a query is compared to a document only once,
structured document retrieval has to match the query with each component of a document.
These multiple similarity computations per document require efficient mechanisms that
reduce the number of comparisons and ensure fast system response. One solution is that
structural constraints are applied as a filter for XML components. Generally, sequencing
filters does reduce the data load considerably.

6 1 Introduction

Processing of retrieval tasks can be supported and improved by document mining tech-
niques in two ways: First, document classification enables users to create groups of related
XML components, which allows browsing and searching such groups. Basic requirement to
do so is the definition of a non-trivial similarity function that compares two document trees.
Second, document clustering identifies groups of similar documents called clusters without
human intervention. Comparing a query to these clusters instead of single documents also
reduces the number of similarity computations considerably.

Of particular importance in structured document retrieval is the ranking of the results. It
has to reflect multiple matches of the structure, content, and metadata of single components
as well as (i.e., structural match, content match) structural relationships among the results.
Based on the tree-like representation, an adequate presentation of the results is needed to
prevent users from getting lost. Because multiple components even of single documents
may be retrieved, browsing functionality of documents containing relevant information is
indispensable. Graphical interfaces assist users with highlighting and focusing relevant
components while explaining the underlying structure and context.

All of the aspects mentioned above are strongly related to each other. For instance, the
representation of documents and their storage are interdependent. Queries are formulated on
the basis of the underlying document structure, which in turn defines the result presentation
during browsing. Thus, structured document retrieval systems have to consider each of these
aspects to perform well. Having identified the crucial points of structured document retrieval,
the next section provides an overview of the approach taken in this work.

1.2 Overview of the Approach

The focus of this thesis is on processing XML structured documents for information retrieval,
where the main issues include document representation, storage, content representation,
indexing, retrieval, classification, and clustering of XML components based on their content
and structure.

As mentioned earlier, the formulation of complex queries requires the competence of the
users in the documents domain, structure, available metadata, and query language. Hence,
the main target user group of SDR systems is considered to be domain experts (e.g., academic
research, jurisprudence area). But even without deeper knowledge (e.g., queries without any
structural constraints), the retrieval results are more useful than complete documents for two
reasons. First, parts of documents usually provide more precise answers to specific questions
than whole documents. Second, parts of documents are already focused by the search engine
so there is no need for further search and browse activities within documents.

1

1.2 Overview of the Approach 7

Bearing in mind the challenges presented in the previous section, a system for structured
document retrieval has been developed. This system, X-DOSE, is based on a scalable client-
server architecture which allows for distributed computing. Initially, new documents are
mapped onto a generic document format and stored in a relational database. A graphical
interface assists users in formulating their queries using XOR, an extended version of the XML-
Oriented-Retrieval language [96]. Given a query, the system returns a result set of ranked XML
components to the client. Users are able to browse documents, where relevant components
are focused and highlighted applying relevance-based colors. A graphical representation
helps users to focus on the results retrieved without losing track of the documents’ structure.
Adding additional constraints identified during inspection of results enables iterative query
refinement that yields more focused results. In the sequel, brief descriptions of the basic
system features are presented:

Document Transformation In order to process heterogenous collections efficiently, the system
transforms documents temporarily into a generic XML format. This format retains the
logical structure and supports metadata information on each structural level, including
back-references to the corresponding parts in the original document. The benefits of
the mapping procedure are simple and uniform data access, reduction of structural
ambiguities, and general processing steps.

Storage Based on the generic XML format, transformed documents are stored in a relational
MySQL4 database. Structure, content, and metadata are maintained separately to
improve access times. The original content of the transformed documents is also kept in
the database, mainly for two reasons:

1. Transformed documents may refer to documents that do not allow direct access
to certain parts (e.g., postscript documents). In response to a query, the content
stored is displayed to the user as a hint where to find the relevant information
within the original source.

2. It allows database-supported full text searches, post processing, and re-indexing
without accessing the original source document again.

Document representation Documents are internally represented as ordered document trees
consisting of XML components, where the content is restricted to the leaf nodes only.
During retrieval, the content of inner nodes is computed on-the-fly using the con-
tents of its descendant nodes. Additional metadata information associated with XML
components supports the identification of relevant results.

4http://www.mysql.com (02.10.2008)

8 1 Introduction

Content Analysis and Representation For the sake of efficient text representation, methods
from the field of natural language processing are exploited. Tokenization, stemming,
tagging, and stopword filtering are applied to extract index terms from textual contents.
In addition to that, multi-terms such as named entities, composite nouns, formulaic
speech, and full forms of acronyms are identified to improve content representation and
matching.

Pure textual content is represented as weighed feature term vector, where the Vector
Space Model (VSM) [213, 211, 214, 21] provides well-established formulae for weighing
and comparison. However, the vector space model applies corpus-based statistics for
term weighing (e.g., the number of documents including a term). This notion has to be
reconsidered in the context of structured documents, since weights of descendant nodes
cannot be simply combined to form weights of ancestor nodes. Instead, plain term
frequency vectors are stored and propagated upwards. Weighing is done on-the-fly
during retrieval after the propagation process.

Classification and Clustering Two techniques, classification and clustering of document com-
ponents, are applied to improve retrieval tasks. At the user-side, classification according
to predefined categories supports browsing, search restriction to a small subset of
elements, and automatic identification of similar contents. It is based on a similarity
function that compares two XML components regarding both the content and structure.
Clustering, on the other hand, generates a hierarchy of clusters used to reduce the
number of comparisons needed during retrieval. Therefore, cluster representatives
reflect the features of the cluster’s components. Given a query, only similar clusters
(through their representatives) are subject to retrieval.

Retrieval Retrieval of XML components includes mechanisms for searching content, structure,
and metadata information. Each type of information is treated differently, then a com-
bined relevance value is computed based on the similarities of these types. Additionally,
a set of user-specific query parameters allows to tune the results. Explicit constraints on
the structure and metadata are applied for pre-filtering of XML components to speed
up retrieval process.

The system is evaluated using real world data provided by the INitiative for the Evaluation
of XML Retrieval (INEX) [82]. The next section describes the logical organization of the work.

1.3 Thesis Outline

The thesis comprises two main parts. The first part (Chapters 2 to 7) provides the theoretical
background of structured document retrieval and introduces concepts and methodologies that

1

1.3 Thesis Outline 9

are used in the development of a SDR system. The second part (Chapters 8 and 9) describes the
system and its evaluation using real world data. Detailed information about indexing, retrieval,
classification, clustering, and evaluation procedures are given. Each chapter comprises a
related work section, reviewing previous research that has been conducted in this field. In
particular, the chapters are presented as follows:

Chapter 2 presents the basic concepts and methodologies structured document retrieval
systems rely on. Key issues of successful systems are described and brought into context. The
chapter tries to answer questions like: What are the proper units to be indexed and which
units are to be retrieved? How is the content within a document tree represented? Where are
the bottlenecks and possible solutions?

Chapter 3 covers document format, storage, and representation issues. Focusing on
document-centric XML documents, a generic document schema is proposed which supports
highly sophisticated user queries addressing the content, structure, and metadata. In addition
to that, the underlying relational MySQL database is explained. An adequate representation
for XML documents is described, relying on various term space considerations.

The goal of any retrieval system is to return relevant information. In written documents
this information is expressed in the form of natural language text. Chapter 4 introduces fun-
damental natural language processing methods that transform these texts into a computable
form. Analysis steps are described and brought in relation to each other, where one steps’
output serves as input for a subsequent step. Tokenization, tagging, stemming, and stopword
filtering are explained and extended to achieve optimal outputs. Finally, the autonomous
tasks are assembled in a sequence that transforms natural language texts into weighed feature
term vectors.

Based on the previous chapter, Chapter 5 deals with more complex natural language
processing tasks. It is concerned with high-level pattern mining to extract multi-terms (e.g.,
named entities) and to identify and resolve acronyms. The process chain described previously
is extended to include these tasks. Due to this process, multi-term indices are created that
improve retrieval performance.

Classification as a means of document organization is introduced in Chapter 6. The
main issue is how two document trees are compared to each other. Based on this similarity,
k-Nearest-Neighborhood classification is used to assign unseen documents to pre-existing
categories. Initial experiments using an extra dataset for XML document classification yielded
good results.

Chapter 7 is concerned with document clustering. In contrast to classification, clustering
aims at finding commonalities among documents without user intervention. Thereby, similar
documents are grouped into clusters. The difficulty is to define an appropriate representation
of a cluster that accounts for all features of the documents assigned to it. In this work,
an approach based on supertrees is proposed. Pruning of uncommon branches is applied

10 1 Introduction

to increase the similarity between a cluster representative and single documents. Several
similarity measures are formulated and compared to each other. In order to validate the
theoretical assumptions in this chapter, a set of experiments was run on a special dataset
dedicated to the evaluation of XML document clustering. The preliminary results were
promising. Further investigations on the improvement of retrieval tasks due to clustering are
carried out in the evaluation chapter.

In Chapter 8, the architecture of X-DOSE, the XML-Document Oriented Search Engine, is
described in detail. X-DOSE is based on a client-server architecture using a MySQL database.
While the client provides a user-friendly graphical interface, the server implements the
processing procedures for indexing, classification, clustering, and retrieval. The whole system
is written in Java, where the modular design supports replacements and extensions of single
system components in a simple and neat manner.

Chapter 9 provides an extensive evaluation of X-DOSE. An official set of about 17.000 IEEE
computer science articles provided by INEX [90] serves as basis to measure the performance
of the approach. Besides experiments that measure the accuracy due to natural language
processing, comparisons to similar systems using the same dataset are carried out.

Finally, Chapter 10 summarizes the theoretical and experimental results achieved. Contri-
butions of the work in the field of structured document retrieval are highlighted and open
issues are identified. An outlook of future research directions concludes the thesis.

2

Chapter 2 Information is the currency of democracy.

Thomas Jefferson

Structured Document Retrieval: An Overview

This chapter introduces structured document retrieval and provides the theoretical back-
ground of this work. The focus is put on preconditions and difficulties of applying information
retrieval on structured documents.

2.1 Introduction

Information retrieval has become an important discipline in computer science. A vast amount
of textual information and data is freely available to everyone, demanding for automatic
methods that help to find and navigate through it. Additionally, information is no longer
plain and unstructured. It has become a conglomerate of content, structure, and metadata.
The main challenge now is to apply information retrieval techniques that fit this kind of
information. The discipline that aims at resolving these difficulties is called structured
document retrieval.

The main idea of structured document retrieval is to exploit the structure together with
the content of documents to improve retrieval performance. This allows users to additionally
retrieve parts of documents, so-called document components, that better fit their information
needs instead of whole documents (e.g., an entire book). Thus, the aim of structured document
retrieval is to return

� document components of varying granularity (e.g., the entire document, a chapter, a
subsection, a single paragraph/table/figure) that are

� relevant to the user regarding their content, structure, and metadata.
Thus, focused retrieval – as structured document retrieval is often called – is concerned with
finding the best entry points in structured documents [151]. These entry points are serving as
starting points for further search and browse activities by the user.

The advantages of applying structured document retrieval are obvious: Large documents
often mask relevant information because most of the entire document is irrelevant to a user
query. Thus, parts of documents often provide better and more focused answers to queries

11

12 2 Structured Document Retrieval: An Overview

regarding a certain topic. Moreover, precise queries can be formulated addressing not only
the content, but also the structure and available metadata. Numerous studies have been
conducted which highlight the improvement of retrieval effectiveness applying structured
document retrieval [257, 151, 156].

Text documents can be regarded as structured in several ways: The simplest (implicit)
structure is according to the linear order of words, sentences, and paragraphs. Second,
a structure is given by the links a document contains (e.g., hyperlinks, cross-references,
citations). Also, temporal or spatial relationships within multimedia documents define a
certain structure. Anyway, the most obvious way to define a documents’ structure is to utilize
the logical structure inherent in the documents’ content (e.g., chapter, section, paragraph).
Structural elements are defined as labeled nodes (optionally containing content) that are
organized in a hierarchy. In structured document retrieval, this latter logical structure is
exploited to define the units used for indexing, storing, and retrieving. According to the logical
structure, textual information can be distinguished into three different categories [21, 195]:

Unstructured information refers to a raw text, optionally containing markup for syntactic
purpose only (e.g., formatting tags in HTML files). Every piece of information can be
placed everywhere within the document. Placement in certain positions and/or markup
tags do not indicate any semantic information about the content. Search results are
whole contents (documents) that are relevant to a query to a certain degree.

Structured information refers to text which is formatted in a strict manner (e.g., database-
like records in CSV files). Additional metadata explicitly defines the type, length, and
other attributes of the content. Here, a piece of information is allowed only in a certain
place associated with a certain semantic expressed in the metadata. Search results are
data objects (e.g., data tuples) that are exact answers to queries addressing the content
according to the metadata. Without knowledge about the underlying metadata and thus
about the document structure, relevant information cannot be extracted.

Semi-structured information strikes a balance between these categories defined above (e.g.,
XML files). As with structured information, extra metadata describes the format
of the content. However, it allows partial matching and missing elements. User-
defined markup tags identify the meaning of the encapsulated content. Relationships
between content containers are specified via nesting and references. Thus, the structure
of a text is expressed without being too restrictive with content attributes (type or
length restrictions, arbitrary nesting) and placing of different elements (e.g., sections,
paragraphs, figures). Query results are parts of documents that match constraints on
both, the content and the structure.

2

2.1 Introduction 13

Retrieval models combining information on textual content and the logical structure
are called structured text retrieval models [21, pp. 62]. When speaking of structured text
documents, in the remainder of this thesis we rather mean semi-structured documents. It is
widely accepted by the scientific community that these terms are used synonymously. The
reason for this is that in contrast to strictly formatted database systems textual documents
are either considered structured or unstructured at all. In this work the term structured text
document is used, although it more correctly refers to semi-structured text document.

While the logical structure provides documents with hierarchical levels of granularity, and
hence more precision can be achieved by means of focused retrieval, it does, however, imply
more requirements on the representation, storage, indexing, matching, retrieval, ranking, and
graphical user interface. Because documents and queries are structured, standard retrieval
models such as the vector space model (see Section 2.3.3) are not adequate anymore. Of
course structured document retrieval involves the same tasks as traditional information
retrieval. However, several aspects of information retrieval applied to flat documents have to
be reconsidered and cannot be straight-forwardly applied on structured documents. Rather
these methods have to be adapted to fit the structured document paradigm. In the past,
structured document retrieval approaches focused on one of three issues [86]:

� The structural approach enriches traditional content-based approaches by including
a structural constraint component. Documents are understood as an ordered set of
independent nodes. This allows to restrict terms to certain document nodes by specifying
additional constraints on the structure. However, these models are based on the boolean
retrieval model and do not support weighing of index terms and ranking. A survey of
these approaches is given in [185].

� The content-based approach represents a document as a sequence of plain text segments.
A first attempt in this direction is passage retrieval [41, 257, 148], which is closely related
to traditional content-based information retrieval. Only few researchers combined
explicit structural information and content-based retrieval [86].

� The tree-matching approach represents both documents and queries as ordered labeled
trees. Thus, document retrieval is understood as an approximate tree-matching problem.
Work about this approach can be found in [219, 220].

Like in traditional information retrieval it is necessary to first identify and define the major
tasks of structured document retrieval. These include the following aspects:

(a) Document format: Crucial for the performance of any retrieval system is its underlying
document collection and the document format used. Besides processing and performance
issues, it further has to support textual and binary (e.g., multimedia data) contents, fit

14 2 Structured Document Retrieval: An Overview

the structural expressiveness requirements, and optionally include metadata at certain
structural levels.

(b) Representation: Not all nodes in a document provide a meaningful portion of information
because they might be too small or relevant only in a certain context. As a first step
so-called indexing nodes are identified, defining the basic components that are able to
be retrieved. Textual content of the hierarchically structured documents is generally
restricted to the leave nodes. Hence, mechanisms to represent the content of inner
indexing components have to be defined.

(c) Ranking: Related to the previous aspect, a scoring function to match document compo-
nents and queries expressing their similarity and thus their relevance is needed. Based on
the score the final results are ranked and returned to the user.

(d) Retrieval granularity: An important question is whether the retrieval units must be known
ahead of time or are dynamically decided by the system itself. Based on the above score,
the elements to be returned have to be decided.

(e) Query language: In order to formulate a users’ information need a query language has to
support complex constraints on the content, structure, and metadata.

(f) Result presentation: The way results are presented is a key issue and has to be considered
early in the design phase. Once ranked, the results are displayed showing their context of
appearance together with their relevance score. Browsing as a means to further explore
documents containing multiple result components is inevitable.

(g) Evaluation metrics: Measuring the performance of a newly proposed retrieval system is
essential to show its benefits. To be able to compare the results achieved against similar
systems, a well-defined document collection, a set of user queries, valid results of the
queries, and proper evaluation metrics are required.

In the sequel this chapter discusses these aspects.

2.2 XML Document Format

The XML document format [4] has become an emerging standard for the representation of
text documents. Simply being a text document, the content is marked up using self-defined
tags which can be further enriched by metadata via attributes. The tags themselves must not
overlap, providing a hierarchical structure of the document. From this point of view an XML
document can be seen as a semi-structured text document that can be described as a tree
of nodes. The root node corresponds to the first XML element. Each child node recursively

2

2.2 XML Document Format 15

starts a new branch of the tree. Generally, the content of the document is contained in the leaf
nodes. However, XML allows nodes to contain both content and child nodes. These nodes are
referred to as mixed content nodes.

XML documents may contain any kind of contents in their nodes, even bytecode. It further
allows to combine metadata and content information in a single document. Based on their
application area, XML documents can be separated into two different categories [85]:

Data centric XML stores fully structured information in a database-like style. It is mainly
used for data interchange. Two parties are enabled to exchange data based on their
defined document scheme (DTD or XML schema) and an eXtensible Stylesheet Language
Transformation (XSLT) [9] file. The XSLT file is used to translate documents instantiating
one schema into documents instantiating a different one. Generally, the order among
XML elements in such documents is not crucial.

Document centric XML, in contrast, deals with hierarchically structured full-text documents.
As with data centric documents, a DTD or XML schema specifies valid document
structures. But this kind of documents is not supposed to be transformed. Rather the
schema is used to check whether a document is valid or not. In general, the order
of XML elements plays a central role (e.g., the introduction always comes before the
conclusion).

The difference between data and document centric documents is not a sharp one. Data
centric documents may involve an order among their child nodes, whereas document centric
documents may also contain unordered metadata like the author’s name or section titles.
But commonly it is clear whether XML documents are used in a data or document centric
way. This work focuses on processing document centric XML documents, where the order of
elements is of importance. However, special types of nodes dedicated to store metadata are
interpreted in a data centric point of view.

Using XML for structuring documents yields several advantages. (1) XML allows to mirror
domain and application specific document structures using a set of self-defined tags. (2) These
tags can be further extended by metadata information in the form of self-defined attributes.
(3) Moreover, XML supports internal and external linkage (XLink [2] and XPointer [3]). (4)
XML elements in the structure are addressed via their unique path (XPath [53]) starting at the
root element of the document.

The definition of the structure is located in a DTD [5] or in a newer XML schema file [11],
to which XML document instances (the actual XML documents) are referring. Based on the
structural specifications, XML instances can be checked automatically whether they are valid
or not according to the schema given. In contrast to DTD, XML schemata also support the
definition of various data types and formats to restrict the content within XML document
structures.

16 2 Structured Document Retrieval: An Overview

Listing 2.1: XML example code
� �

1 <book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
2 xsi:noNamespaceSchemaLocation="bookdef.xsd">
3 <author>M. Hassler</author>
4 <title>XML Retrieval</title>
5 <abstract>This work ...</abstract>
6 <chapter title="Introduction">
7 <section title="Section 1">XML is one ...</section>
8 <section title="Section 2">
9 This section ...

10 <subsection title="SubSec 2.1">These days ...</subsection>
11 <subsection title="SubSec 2.2">Based on ...</subsection>
12 </section>
13 </chapter>
14 ...
15 <chapter title="Outlook">Crucial for ...</chapter>
16 </book>
� �

Listing 2.1 shows a simple XML document and its representation as an ordered tree
(Figure 2.1), where the order among child nodes is of importance. In the first two lines of
code the specification file for valid structures, here an XML Schema file named bookdef.xsd,
is referenced.

book

author title chapter
title=“Introduction“

chapter
title="Outlook"

section
title=“Section 1“

section
title=“Section 2“

subsection
title=“SubSec 2.1“

abstract

This work ...

subsection
title=“SubSec 2.2“

This section ...

These days ... Based on ...

M. Hassler

XML is one ...

XML Retrieval
Crucial for ...

...

Figure 2.1: XML representation as an ordered tree

Gray shaded nodes in the XML tree refer to the plain content of the document. All
other nodes contain only structural information. One might note that only a single node
(Section 2) contains both, content and structure. Such a node is called a mixed XML node.
Anyway, the content of XML structured documents is generally restricted to the leaf nodes.
Additional information in form of metadata comes with the title attributes in the chapter,
section, and subsection nodes. In the example the elements author and title are not
implemented as attributes of the book element, which would also be a possible solution.

2

2.3 Related Work 17

The XPath expression to address the content of the first subsection SubSec 2.1 is given by
/book[1]/chapter[1]/section[2]/subsection[1].

Generally, there are no standards or even guidelines available that describe how documents
are properly structured. Even the tagsets used for markup vary strongly from one domain
to another. This simple example already indicates the difficulties one has to face when
confronted with XML documents from heterogenous sources or different structure definitions
(e.g., mixed nodes, attribute versus element, etc.).

Exploiting the XML format for information retrieval purposes has several advantages [168]:
(1) more precise search by providing additional information in the elements; (2) unified access
to documents from heterogenous sources; (3) powerful search paradigm using structural,
content, and metadata specification; (4) data and information interchange to share resources
and to support cooperative search.

Within the structured document retrieval paradigm, the structure provided by XML
documents is consulted to define the units for indexing and retrieval. That is the reason for
using XML retrieval as synonym for structured document retrieval or focused retrieval. In this
context the goal of XML retrieval can be reformulated as retrieving document components
(XML elements) of arbitrary granularity that are relevant to a certain user query instead of
whole documents only.

2.3 Related Work

This section outlines several aspects and work related to structured document retrieval. It
covers historic developments and depicts currently probed approaches in this field.

2.3.1 Database and Information Retrieval Perspective

There are two main communities who have concentrated their efforts on the computation
of semi-structured XML documents: the database community and the information retrieval
community [167, 195].

The database-oriented approach tries to tackle the problem of querying structured infor-
mation in a database like manner. Most of the information on the internet exists in form of
HTML documents and/or is stored in relational databases. Both information sources can
be represented using XML (e.g., see [1]) as an intermediate document format. This opens
the door to apply database-like search techniques which are further extended to support
proximity search and ranking.

Simply speaking, XML documents are plain text files. Thus, information retrieval ap-
proaches can be applied straightforward to search and retrieve information from these
documents. As soon as XML turned out to be closely related to HTML, the information

18 2 Structured Document Retrieval: An Overview

retrieval community focused their research on this area [195]. A first attempt was to simply
ignore the additional markup, which led to lower retrieval performance [167]. More elabo-
rated approaches include extra indices of the structure, support regular expression matching
of XML paths and contents, and affiliate basic semantics with certain structural elements.
However, these extensions were not as straightforward as assumed, leaving much space for
further research.

2.3.2 Fragment and Passage Retrieval

Early work on returning parts of documents instead of full documents in response to user
queries was done by John O’Connor [188, 189]. The idea is to segment a text into so-called
text passages and then to apply standard indexing and retrieval models. In this context
a text passage is defined as a set of ‘consecutive words’, a sequence of words in ‘reading
order’. According to this approach, documents are considered as linear sequences of text
fragments. Passages are mostly defined as non-overlapping and do not exactly match the
underlying document structure. Later work by Mittendorf and Schäuble [181] focuses on
query-independent text segmentation using Hidden Markov Models.

Another work, although based on passages but closer related to the notion of logical
structure, was proposed by Burkowski in [41]. In this approach a document is represented
using multiple lists of non-overlapping passages, where each list corresponds to a certain
level in the hierarchical structure expressed through tags (e.g., headlines, sections, paragraphs,
authors). Queries are formulated as retrieval command strings, implementing a text algebra
based on a defined containment model. The final result set is ranked applying a statistical
ranking strategy based on document length, term frequency, and inverse document frequency.

Salton et al. [212] probed several passage sizes which are evaluated using the SMART
retrieval system. Similar experiments are conducted by Callan [42] who uses paragraph-sized
and window-sized passages in the INQUERY retrieval system. His evaluation results show
that a combination of document- and passage-level outperforms the others.

Further experiments done by Wilkinson [257] confirm that combined results of whole
documents and parts of documents enhance retrieval. In [258] he and his colleague found
that a page size of about 1000 bytes define useful fragments.

Kaszkiel and Zobel [148] came to the same conclusion as Wilkinson, showing that a fixed
length passage approach is efficient and robust. However, in subsequent experiments they
found that passages of arbitrary length improve retrieval performance significantly.

Based on these findings, classical passage retrieval methods assume a window of fixed
length which is slid stepwise over the whole text of a document [50]. In each position
the distribution of words is analyzed. Passage boundaries are found if the distribution of
words within two subsequent window positions changes significantly. Having identified

2

2.3 Related Work 19

the passages, it is straightforward to apply standard information retrieval strategies on the
corpus of text passages instead of the documents. However, passages do not exactly reflect
the logical structure of documents intended by their authors. Thus, retrieval performance
strongly depends on the applied segmentation of a text into passages. Also, splitting texts
into passages predefines all possible units for indexing and retrieving in a static way. This is
one of the reasons why the logical structure of documents is believed to improve the efficiency
of retrieval systems [50].

Grossman and Frieder [110] briefly review initial work in passage retrieval and discuss
approaches as marker-based passages, dynamic passage partitioning, and merging passage-
based similarity measures.

2.3.3 Retrieval Models

Language Models

Ogilvie and Callan [190] propose a tree-based generative language model approach for
ranking document components. In their work they use probabilistic context free grammars
to estimate the probability of parse trees for sentences within certain components. The
probability of a specific parse tree, and thus its ranking, is computed as the product of the
probabilities of all rules applied in creating this (sub)tree. For each leaf node in the document
tree the language model is estimated directly from the text attached to the node. Therefore,
three different ranking models, the Kullback-Leibler Divergence, the Generative Language
Model, and the Maximum-Likelihood Estimate are evaluated. In order to represent inner
nodes, linear interpolation is applied, where the parameters for combining language models
of children to ancestor nodes are learned from a large data repository. These parameters
conform to the augmentation factor described by Fuhr et al. [83]. Smoothing, the re-estimation
of the probabilities in a language model, improves the estimates by including knowledge
based on sample data.

Kamps et al. [145] suggest to support language-model based ranking strategies by priors,
smoothing functions, and cut-off values. While priors allow non-content features such as
the length of a document component to be included in the scoring mechanism, smoothing
is used to increase the relevance score of small components containing only a small subset
of the query terms. Without smoothing, larger components containing more query terms
are favored. In order to avoid too small components to be retrieved they propose cut-off
values for the minimal length of retrieved elements. Their experiments show that extreme
length normalization is an important issue in XML retrieval as a means to improve retrieval
performance.

20 2 Structured Document Retrieval: An Overview

Bayesian Models

Piwowarski et al. [202] use Bayesian networks for the sake of XML retrieval. Complex queries
are decomposed and translated into elementary subqueries, where each subquery refers to
a single component. Subqueries are implemented as Bayesian networks (directed acyclic
graphs). In the graph, nodes represent XML components (tag names) that are interconnected
via arcs representing relations between the components. The joint probability of a set of i
components {xi} is given by

P({xi}) = ∏
i

P(xi|xi parents)

where xi parents denotes the parents of node xi in the network. The content of document
components is represented using external models. The relevance score P(d|q) of a document
d with respect to query q is given by

P(d|q) = ∑
i=1..n

P(x1, x2, ..., xn|q)

In order to answer a user query, the evidence is added to the network as shown in Figure 2.2.
For every target element to be retrieved, the set of elementary networks is connected to

query

ARTICLE

SEC[1] SEC[2]

P[1] P[2] P[3]

Figure 2.2: Structured document retrieval using Bayesian networks [202]

compute its global score. As an example, the relevance of sec[1] in the figure is given by:

P(sec[1]|q) = ∑
d

P(d|q)P(sec[1]|d, q)

Additional connection parameters are estimated from the corpus using the Estimation Maxi-
mation algorithm [63].

2

2.3 Related Work 21

The Vector Space Model

Introduced by Salton in 1968, the vector space model [213, 211, 214] provides a solid framework
that allows to compute a degree of similarity between a document and a query. The model
represents documents and queries as term vectors with associated term weights. Term
weights w are calculated by combining term statistics (term frequency t f) and corpus-based
statistics (inverse document frequency id f) using the Equations 2.1–2.3 [21, pp. 27–30].

t fi,j =
f reqi,j

max f reql,j
(2.1)

id fi = log
N
ni

(2.2)

wi,j = t fi,j · id fi (2.3)

The actual weight wi,j of a term i in a document j is computed as the normalized term
frequency t fi,j times the inverse document frequency id fi. f reqi,j refers to the raw term
frequency of term i in document j, and max f reql,j is the maximum raw frequency of any
term l in document j. id fi can be seen as a terms’ discriminative power among the documents.
In the formulae N is the total number of documents in the system, whereas ni stands for the
number of documents containing term i. The effect of the inverse document frequency is to
downweigh terms that occur frequently throughout the whole collection, and the other way
round, to increase the importance of terms that are rare.

Queries are represented and weighed in the same way. The similarity of a document dj

and a query q is defined as the cosine measure between the two weighed feature vectors
(Equation 2.4). t denoted the total number of terms.

sim(dj, q) =
−→
dj • −→q
|
−→
dj | · |−→q |

=
∑t

i=1 wi,j · wi,q√
∑t

i=1 w2
i,j ·
√

∑t
j=1 w2

i,q

(2.4)

Vector Space Model based Approaches

Grabs and Schek [106, 105] propose a model based on vector spaces generated on-the-fly for
flexible XML retrieval. The main idea is that content on different levels in a document tree is
considered to be of different importance with respect to a query. Therefore, index nodes are
identified that are indexed and retrieved. More distant nodes are treated as less important than
nodes closer to the index nodes. Term weighing is done using the traditional t f · id f formula,
where the notion of id f is extended to inverse element frequency. For their experiments at
INEX 2002 Grabs and Schek distinguish single-category retrieval, multi-category retrieval,
and nested retrieval (which they call flexible retrieval), reflecting the complexity of the queries

22 2 Structured Document Retrieval: An Overview

(single-category ≤ multi-category ≤ nested). Single-category retrieval refers to retrieval of
index nodes addressed through a single path expression (e.g., paragraphs in main sections
/ARTICLE/SEC/P). Multi-category retrieval extends retrieval to disjunct sets of index nodes
(e.g., paragraphs and figures in main sections /ARTICLE/SEC/P or /ARTICLE/SEC/FIG). The aim
of nested retrieval is to provide efficient and consistent retrieval over arbitrary combinations
and nestings of XML components. It enables queries that are restricted to whole subtrees (e.g.,
everything within main sections /ARTICLE/SEC/*). Subtrees may comprise besides multiple
categories additional non-index nodes at higher levels and complex containment relations.
Augmentation is applied to downgrade term weights according to Fuhr et al. Indices and
statistics are preprocessed and stored for leaf elements only. Representations of inner nodes
are computed on-the-fly when needed.

Another approach based on the vector space model is proposed by Mass and Mandelbrod
in 2004 [175]. In order to overcome the difficulties occurring in nested components, they
create separate indices for components on the same level (e.g., all documents, all sections, all
paragraphs). For each of these indices, formulae from the vector space model are used for
weighing and for similarity computation. During query processing, all indices are searched,
resulting in multiple result sets of varying granularity. As a final step, a document pivot
factor is applied to combine and re-rank the retrieved result sets. In their experiments Mass
and Mandelbrod show a 30%–50% improvement of mean average precision compared to
previous retrieval results achieved in [174].

Liu et al. [164] also propose a t f · id f model for structured document retrieval. XML
documents are represented using Ctrees, which is a compact tree representation for the whole
document collection. Queries are expressed in the NEXI language (see Section 2.3.5) used at
the INEX workshop in 2003 and represented as query trees. The content of XML elements is
represented as weighed feature vectors applying a combination of term frequency, inverse
element frequency, label weights, and weights for query term modifiers. During retrieval, the
query is decomposed into a set of retrieval components which are grouped according to their
structural specificities. XML components matching a subquery are evaluated independently
and relevance scores are assigned. The overall relevance of an XML component is obtained
by merging all subquery relevance results to a single score. Finally, a ranked list of XML
elements is returned to the user.

2.3.4 Retrieval Units

Hatano et al. [125] addresses the problem of determining proper retrieval units of XML docu-
ments. By defining XML elements as retrievable (meaningful) or not retrievable (meaningless),
the number of targeted portions of XML elements can be reduced. Kazai et al. refers to
meaningless contexts as stop contexts [152] (e.g., XML elements carrying only layout informa-

2

2.3 Related Work 23

tion). This distinction leads to improvements during indexing, matching, and retrieval. The
remaining (meaningful) portions of XML documents are called coherent partial documents.
They are identified automatically based only on the topology of a document tree. Thus, no
explicit definition of the structure in form of a DTD or XML schema file is needed. A context
node is defined to be an ancestor node which does not have sibling nodes of the same type
(element name). To avoid too small contexts of text nodes, a minimum distance of two nodes
(grandparent) is demanded.

2.3.5 Query Languages

XIRQL [84, 85, 87, 86] is an XML query language based on XQL [206] which is extended
by information retrieval concepts for weighing, data types and vague predicates, relevance-
oriented search, and semantic relativism. These functionalities are implemented via special
XIRQL operators. Boolean operators enable the user to combine subqueries to more complex
ones. The final XIRQL query is transformed into an underlying path algebra defined in [85, 86],
which is then optimized and executed.

Theobald and Weikum [237] propose XXL (fleXible XML search Language) for querying
structured documents. In XXL a query is internally represented as a directed labeled data
graph, including a set of wildcard placeholders for path constraints and single element names.
Besides the standard set of operators on strings and other simple data types, a special tilde
operator ∼ is used to enable semantic similarity matching based on ontologies. A graphical
interface named Visual XXL GUI helps formulating complex user queries.

Proposed by O’Keefe and Trotman [191], NEXI (Narrowed Extended Xpath I) [240] is
developed as a query language used at INEX since 2004. Since XPath seems to be too complex
for end-users to formulate their information needs [195], NEXI implements only a subset of
XPath to address certain XML elements (hence its name narrowed). Because XPath does not
support information retrieval like matching, NEXI is extended by an about() predicate that
enables similarity-based content matching.
For example, the NEXI query /doc[about(., computer)]//sec[about(./par, apple)]

searches all documents <doc> that contain the term computer and returns sections <sec>

with paragraphs <par> that contain the term apple. The semantics of NEXI queries is not
defined; instead, the retrieval engine has to deduce it, which is why NEXI differs from
database-oriented query languages. Introducing NEXI at INEX significantly improved re-
trieval results: The error rate of experts formulating complex queries dropped from 63% (in
2003) to 12% (in 2004) [241].

Geva et al. [96] introduced XOR, the XML Oriented Retrieval language, which is intended
to replace NEXI as query language in INEX. XOR is based on the previous NEXI syntax
and therefore backwards compatible. Extra functionalities are added to support advanced

24 2 Structured Document Retrieval: An Overview

information retrieval tasks. These extensions include a negation operator for content matching
(-about(...)), logical operators for query combination (AND, OR, NOT, ANDNOT, SUPPORT), path
matching extensions (strict, vague), term extensions (e.g., part-of-speech tags, case of
letters), logical operator qualifiers (strict, vague), and additional predicates (e.g., LinkTo(),
LinkFrom(), Contains(), lt(), eq(), gt()). Based on these definitions, an open-source parser
for the XOR language was developed. The parser is able to translate XOR queries into reverse
polish notation supporting the implementation of back-end processors. However, XOR is not
supposed to be used as an end-user query language. It is meant to be an underlying language
model supported by natural language query interfaces and query generators. Reported
results of four different baseline systems using XOR instead of NEXI show significant retrieval
improvements.

2.3.6 Performance

Fuhr and Gövert [79, 80] address an issue regarding the performance of structured document
retrieval systems. They suggest index compression to scale down storage requirements for
indexing XML documents. In their work, inverted files with compressed paths are used to
speed up database access. Further, a new data structure called XS tree is proposed, which
stores structural information of a document in a very compact form.

2.4 Index Objects

The first step of searching structured documents is to define the way documents are indexed.
This index provides the basis for applying weighing and ranking formulae, which allow
similarity-based matching of XML components to queries. Generally, there are two possible
options: the development of a completely new weighing scheme; or the adaptation or
generalization of existing ones (e.g., language models, Bayesian models, vector space model).

According to Fuhr and Großjohann [85], the long experience with existing weighing and
ranking strategies in traditional information retrieval favors the second option. Thus, the
atomic units or index objects of a document must be identified. According to Fuhr and
Großjohann [85] this results in two benefits: first, traditional information retrieval models can
be applied for processing these elements; and second, only index objects are returned to the
user.

Starting with the assumption that textual contents are restricted mainly to the leaf nodes
of the document tree, these leafs are obvious candidates for atomic units. However, their
granularity might be to fine grained as retrieval result [85]. Just assume that a query searching
for M. Hassler returns only the component <author>M. Hassler</author>, not including
any additional information about the document he wrote. Without any context, this turns the

2

2.4 Index Objects 25

result completely useless. Hence, Fuhr and Großjohann propose to rely on a hand-crafted
definition of disjunct index nodes (also called index objects or contexts). These index nodes
are identified either by (1) analyzing the underlying DTD or XML schema, or alternatively (2)
according to the type of content (e.g., chapter elements).

The root of a document itself is defined as the uppermost index node. The contents of all
remaining non-index nodes are indexed at their nearest ancestor index node.

Figure 2.3 shows an example document and its corresponding index nodes (dashed boxes).
In order to get the complete content of an arbitrary index node, the contents of all descendant
index nodes are propagated upwards (arrows) and are combined with the content of the
current index node itself.

book

author title chapter
title=“Introduction“

chapter
title="Outlook"

section
title=“Section 1“

section
title=“Section 2“

subsection
title=“SubSec 2.1“

abstract

This work ...

subsection
title=“SubSec 2.2“

This section ...

These days ... Based on ...

M. Hassler

XML is one ...

XML Retrieval
Crucial for ...

...

Figure 2.3: Example XML document tree with disjoint index objects

An automatic identification of appropriate index (and retrieval) nodes is proposed by
Hatano and his colleagues [125]. The idea is to select only nodes that have sibling nodes at
the same level in the hierarchy. These nodes are characterized by the same path start-
ing at the root node. Figure 2.4 depicts the identified indexing paths /book/chapter,
/book/chapter/section, and /book/chapter/section/subsection of the previous example.
Again, the root node is defined as prime index node. In order to avoid unidentified index
nodes in document instances where only a single element is implemented (e.g., only a single
chapter within a book), the identification can be shifted to an analysis of the DTD or XML
schema instead. However, in cases where a definition of the structure is missing this option
might not be available. Thus, multiple chapters in documents are indexed whereas a single
chapter is not. In the above example one can see that applying this approach misses at least
the <abstract> component as an index object. If other nodes similar to <abstract> occur
frequently within the document domain, an automatic approach seems not to be the best
solution.

26 2 Structured Document Retrieval: An Overview

book

author title chapter
title=“Introduction“

chapter
title="Outlook"

section
title=“Section 1“

section
title=“Section 2“

subsection
title=“SubSec 2.1“

abstract

This work ...

subsection
title=“SubSec 2.2“

This section ...

These days ... Based on ...

M. Hassler

XML is one ...

XML Retrieval
Crucial for ...

...

Figure 2.4: Automatic identification of disjoint indexing units

The reason for indexing only a selection of nodes results in two main advantages:

� The number of nodes which have to be indexed is reduced. Especially in the context of
structured document retrieval this increases performance during the indexing, matching,
and retrieval processes.

� Meaningful portions of information are defined independently of user queries. This
ensures that the system does not return XML components that are too small to be
interpreted without contexts.

2.5 Content Representation and Weighing

In order to represent structured documents for retrieval purposes, many approaches have
been proposed [85, 151, 44, 156]. Good surveys are given by Luk et al. [168], Pal [195], and
Pinel-Sauvagnat and Boughanem [201].

The representation is always guided by the efficiency of processing queries and retrieving
relevant parts of documents. While many structured retrieval systems rely on persistent XML
databases, the representation varies from one system to another. Furthermore, mechanisms
for indexing and ranking document components during retrieval are different. Approaches
proposed by the information retrieval community are similar to those investigated by the
database community to some degree. However, while the latter class of approaches aims
at dealing with the boolean model, the former is concerned with more advanced models
that allow to handle both structure and content of documents. From this point of view it is
reasonable to combine both paradigms, that is fast database processing and sophisticated
similarity computation to efficiently and accurately compute retrieval results.

Having identified the index objects described in the previous section, methods borrowed
from flat document retrieval can be applied to represent and weigh the content of these nodes.

2

2.5 Content Representation and Weighing 27

Traditionally, content-based retrieval systems rely either on the boolean model or on the
vector space model [213, 211] to represent the content as a bag of words. Extensions of these
models have been proposed, e.g., the fuzzy boolean model, knowledge-aware models, or the
extended vector space model [21].

However, all of these indexing models ignore the logical organization of texts expressed
by the documents’ structure. In order to apply existing models to structured document
retrieval the content of components is represented and stored using flat indexing. Beyond
that mechanisms dealing with the hierarchical relationships among document components
have to be applied.

For illustration purpose this section relies on the vector space model (described in Subsec-
tion 2.3.3) to represent the content as a weighed feature term vector. The actual weight of a
term is calculated by combining term statistics and corpus-based statistics (Equations 2.3 –
2.2). The challenge that arises at this point is to aggregate multiple disjoint feature vectors
of descendant index objects to a single feature vector of their parent index object. For this
purpose two different solutions are feasible [17]:

Propagation of term statistics To compute the weight of terms for a given node, raw term
statistics (e.g., term frequency, document length) of its descendants are accumulated (i.e.,
summed up). Weighing formulae are applied afterwards to yield the final term weights
(on-the-fly weighing [106]). In other words, term weights are calculated independently
of the weights associated with the node’s descendants. Thus, no recombination of term
weights (using empirical parameters) is needed and existing formulae can be applied
without being altered.

Propagation of term weights In contrast to the propagation of term statistics, term weights
of a node are computed by aggregating the weights of its direct descendants without
explicitly referring to their term statistics. Therefore, mechanisms for combining multiple
term weights have to be defined.

A concept proposed by Fuhr and his colleagues to combine the representations of lower
components with higher ones, first described in [83], is called augmentation. The idea
is to augment the content of a component by the contents of its children. Figure 2.5
explains the concept of augmentation in a brief example. The left tree represents an
XML document consisting of three components (Figure 2.5a). The root element contains
the term XQL and consists of two children elements (mixed content node). The first child
states the term example and the the second child mentions the terms XQL and syntax.
The numbers in front of the terms are the independently computed terms weights of
each component. The root node of the tree in the center contains already the propagated
term weight for XQL (Figure 2.5b). Here, the weight of child components adds to the
ancestors weight by applying the inclusion-exclusion formula presented in [27, pp. 20]:

28 2 Structured Document Retrieval: An Overview

0.8 XQL
0.7 syntax

0.5 example

0.3 XQL

0.8 XQL
0.7 syntax

0.5 example

0.3 XQL

0.8 XQL
0.7 syntax

0.5 example

0.3 XQL

no weight propagation

weight propagation

weight propagation with augmentation factor 0.6

0.636

0.86

= 0.3 + 0.8 – 0.3*0.8

= 0.3 + 0.6*0.8 – 0.6*0.3*0.8

(a) Initial term weigths

0.8 XQL
0.7 syntax

0.5 example

0.3 XQL

0.8 XQL
0.7 syntax

0.5 example

0.3 XQL

0.8 XQL
0.7 syntax

0.5 example

0.3 XQL

no weight propagation

weight propagation

weight propagation with augmentation factor 0.6

0.636

0.86

= 0.3 + 0.8 – 0.3*0.8

= 0.3 + 0.6*0.8 – 0.6*0.3*0.8

(b) Aggregated term weights

0.8 XQL
0.7 syntax

0.5 example

0.3 XQL

0.8 XQL
0.7 syntax

0.5 example

0.3 XQL

0.8 XQL
0.7 syntax

0.5 example

0.3 XQL

no weight propagation

weight propagation

weight propagation with augmentation factor 0.6

0.636

0.86

= 0.3 + 0.8 – 0.3*0.8

= 0.3 + (0.8 – 0.3*0.8)*0.6

(c) Aggregated term weights with
augmentation factor of 0.6

Figure 2.5: Propagation of term weights (cf. [86])

P(e) = P(C1 ∨ ...∨ Cn) =
n

∑
i=1

(−1)i−1

(
∑

i≤j1≤...≤ji≤n
P(Cj1 ∧ ...∧ Cji)

)

However, this example shows already the dilemma: the term weight of the ancestor
always exceeds the weight of the child. The solution proposed by Fuhr et al. is
to introduce so-called augmentation weights (∈ [0; 1]) for downgrading propagated
weights. In the right tree (Figure 2.5c) an augmentation factor of 0, 6 is applied. While
applying this factor still increases the weight of the ancestors term, it still keeps the
descendants weight higher. By allowing different augmentation weights in different
index nodes, domain and collection dependent tuning of term weight propagation is
possible.

Since term weights already include corpus-based statistics such as the inverse document
frequency, representations of root nodes applying augmentation diverge from flat
document representations on the same content using the same weighing formulae.

In this work the first approach, namely the propagation of term statistics, is followed. This
decision is mainly taken for one reason: The content representation of the root node exactly
matches the traditional flat information retrieval approach. Due to this correspondence it is
possible to test and compare the performance of structured document retrieval to traditional
information retrieval engines on the document level. Whichever propagation is used, one
has to be aware of its most important implication: Due to the aggregation of information
from descendant nodes to ancestor nodes, a relevant child component implies relevance of all
its ancestor components – at least to a certain degree. The calculation of XML component
representations carried out in this work can be summarized as a four-step process:

1. Disjoint index objects are identified
2. Contents of index objects are represented and stored in form of term statistics (local

representation)
3. Starting at the leaf nodes, term statistics are propagated upwards the document hierarchy

(global representation)

2

2.6 Querying and Ranking 29

4. The final representations are computed by weighing the propagated term statistics using
corpus-based or path-based statistics (weighed feature vector)

2.6 Querying and Ranking

Representing index objects as described in the previous section is a basic requirement of
querying and subsequent ranking of document components. The concept of searching within
structured documents is based on the comparison of each components’ representation with
a query that is represented in the same way. In contrast to flat documents, each query is
compared multiple times (once for each component) to a single structured document. Hence,
scalability depends on efficient algorithms to manage these vast amount of comparisons

Sticking with the vector space model (see Subsection 2.3.3), the similarity of a document
component and a query representation is defined as the cosine measure between the two
weighed feature vectors (Equation 2.4). However, computing the similarity of single XML
component contents stored in the database independently is not sufficient. It is important to
include the contents of descendant nodes as well. To illustrate this issue consider the example
in Figure 2.6a. The same document with its aggregated representations indicated is given
in Figure 2.6b. For illustration purpose the term weights are passed upwards without being
changed. Note that this refers to maximal weights at the ancestors, hence propagation is
meant only to reduce propagated weights. If someone wants to know something about pets,
this document (Figure 2.6b) is queried for instance with the weighed terms 0,90 cats and
0,80 dogs. Figure 2.6c gives the similarities (cf. Equation 2.4) of all document components
and this query, showing an interesting result: Both sections are relevant to the query reaching
a similarity of 74,7% and 66,4%. Chapter 2 is less relevant than both sections (65,5% similarity).
From a focused retrieval point of view this comes quite unexpected, because the second
chapter is the smallest component that fully covers the query. Thus, it is expected to be the
optimal (top-ranked) result to this query. The whole book itself is relevant to a degree of
44,9%, which again meets a users’ expectation.

From this example it seems to be necessary to include further mechanisms that reflect
structural relationships more accuratly. In structured document retrieval every index ob-
ject is a potential query result item. Hence relevant descendant components imply that
ancestor components are also relevant to the same query (even to a less degree), overlap
of query results is unavoidable. This ability puts additional requirements on the retrieval
mechanism, which has not only to return relevant components but also components of the
correct granularity [146]. Neither should the components be too small nor should they be
too large. From this point of view, the highest rank should be assigned to the second chapter
in Figure 2.6. One possible solution is to redesign the propagation strategy. However, this

30 2 Structured Document Retrieval: An Overview

book

chapter 2 chapter 3

section 1 section 2

chapter 1

book

chapter 2 chapter 3

section 1 section 2

chapter 1

0.7 insects 0.9 mammals 0.7 birds

0.65 cats 0.45 dogs

0.8 animals

0.7 insects 0.9 mammals
0.65 cats
0.45 dogs

0.7 birds

0.65 cats 0.45 dogs

0.8 animals
0.7 insects
0.9 mammals
0.65 cats
0.45 dogs
0.7 birds

w
ei

gh
te

d
te

rm
 v

ec
to

s animals

insects

mammals

cats

dogs

birds

book chapter 1 section 1 chapter 3chapter 2 section 2 query

0.80

0.70

0.90

0.65

document components

0.65

0.70

0.70

0,45

0.70

0.45

0.65

0.45

0.90

0,90

0.80

sim(dj,q) 0.449 0,655 0,747 0.664

-

-

-

-

-

-

-

-

-

-

-

-

--

--

--

-

-

-

-

-

-

-

-

-

-

-

|dj|, |q| 1,75 1,20 0,65 0,45 0,700,70

dj • q 0,95 0,95 0,59 0,36 --

1,20

(a) Initial tree

book

chapter 2 chapter 3

section 1 section 2

chapter 1

book

chapter 2 chapter 3

section 1 section 2

chapter 1

0.7 insects 0.9 mammals 0.7 birds

0.65 cats 0.45 dogs

0.8 animals

0.7 insects 0.9 mammals
0.65 cats
0.45 dogs

0.7 birds

0.65 cats 0.45 dogs

0.8 animals
0.7 insects
0.9 mammals
0.65 cats
0.45 dogs
0.7 birds

w
ei

gh
te

d
te

rm
 v

ec
to

s animals

insects

mammals

cats

dogs

birds

book chapter 1 section 1 chapter 3chapter 2 section 2 query

0.80

0.70

0.90

0.65

document components

0.65

0.70

0.70

0,45

0.70

0.45

0.65

0.45

0.90

0,90

0.80

sim(dj,q) 0.449 0,655 0,747 0.664

-

-

-

-

-

-

-

-

-

-

-

-

--

--

--

-

-

-

-

-

-

-

-

-

-

-

|dj|, |q| 1,75 1,20 0,65 0,45 0,700,70

dj • q 0,95 0,95 0,59 0,36 --

1,20

(b) Aggregated tree

book

chapter 2 chapter 3

section 1 section 2

chapter 1

book

chapter 2 chapter 3

section 1 section 2

chapter 1

0.7 insects 0.9 mammals 0.7 birds

0.65 cats 0.45 dogs

0.8 animals

0.7 insects 0.9 mammals
0.65 cats
0.45 dogs

0.7 birds

0.65 cats 0.45 dogs

0.8 animals
0.7 insects
0.9 mammals
0.65 cats
0.45 dogs
0.7 birds

w
ei

gh
te

d
te

rm
 v

ec
to

s animals

insects

mammals

cats

dogs

birds

book chapter 1 section 1 chapter 3chapter 2 section 2 query

0.80

0.70

0.90

0.65

document components

0.65

0.70

0.70

0,45

0.70

0.45

0.65

0.45

0.90

0,90

0.80

sim(dj,q) 0.449 0,655 0,747 0.664

-

-

-

-

-

-

-

-

-

-

-

-

--

--

--

-

-

-

-

-

-

-

-

-

-

-

|dj|, |q| 1,75 1,20 0,65 0,45 0,700,70

dj • q 0,95 0,95 0,59 0,36 --

1,20

(c) Cosine similarities

Figure 2.6: Query matching in structured documents

may lead to weighing inconsistencies at the representation level. Another approach combines
the computed similarity values of ancestors and descendants directly. The final score, often
called Retrieval Status Value (RSV), has to take account of these issues.

As stated above the retrieved units in structured document retrieval are not whole doc-
uments but document components. This leads to difficulties in query matching, because a
query is no longer matched against one (large) document feature vector. Now it is compared
to a lot of (respectively small) leaf representations, as well as to many inner nodes with
accumulated – though not necessarily small – feature vectors. Using a term space that consists
of all document terms, smaller portions of text consequently lead to sparser representations.
This sparseness of feature vectors has to be considered, because single term matching results
in high relevance values. Generally, natural language processing techniques have not sig-
nificantly improved the performance of flat document retrieval [55, pp. 227]. However, in
the domain of structured documents dealing with small portions of text retrieval quality is
believed to benefit from deeper linguistic analysis.

2

2.7 Query Language 31

2.7 Query Language

In the past several languages for querying XML documents have been proposed (XPath [53],
XQL [206], XQuery [28], XML-QL [66]). An overview of the features of five of these languages
(LOREL, XML-QL, XML-GL, XSL, and XQL) is provided by Bonifati and Ceri in [29]. Two
other surveys are given by Deutsch et al. [67] and Luk et al. [168].

However, these languages are still lacking some important features. Missing concepts
range from ignoring data types and absence of term weighing functionality to unsupported
similarity matching [84]. Also, the complexity of these languages is too high and the
syntax is too complicated for users to express their information needs [259]. Anyway, these
languages provide basic building blocks and good starting points for the development of
more appropriate information retrieval query languages. The requirements put on a query
language can be summarized as [87, 86]:

Weighing Document and query term weights enhance retrieval performance.

Relevance-oriented search If no specific result elements are specified, the system should
return the most specific document components.

Data types and vague predicates Data types refer to semantic categories that explain the
content of an XML component more clearly (e.g., PersonName, Title, PlainText). Data
types allow for better search results in case these are addressed in a correct manner.
Special search predicates defined on certain data types provide sophisticated matching
functionality.

Structural vagueness If a user searches for a certain value without caring about the underly-
ing document structure, the system should be able to generalize structures to fit the users
information need. This includes attribute versus element distinction, generalization
of ancestor-descendant relations, as well as similarity of element and attribute names.
Furthermore, data types provide another kind of generalization regarding elements and
attributes.

Based on these requirements more appropriate higher-level query languages like XIRQL,
XXL, NEXI, or XOR (see Section 2.3.5), to name just some of them, have been developed.
Intended to bridge the gap between pure structure-oriented and content-based retrieval, all of
these languages have their own syntax and semantic, but in general, their basic functionalities
remain the same. However, only NEXI and XOR are supposed to be interpreted by a retrieval
engine only. Listing 2.2 presents an example query in XOR.

32 2 Structured Document Retrieval: An Overview

Listing 2.2: XOR query example
� �

1 //book[about(.,XML) ANDNOT about(.,XSLT)]//*//subsection[about(.,These days)]

2 AND

3 //book[eq(.//author,M. Hassler) OR about(.//*,Retrieval)]
� �

In the listing, the XOR query is composed of two main subqueries (line 1 and 3). The first
subquery retrieves subsection elements containing These days which occur in books that
treat XML but not XSLT. The second subquery retrieves book elements where the author is
exactly M. Hassler or where any element is about Retrieval. Finally, the two subqueries are
combined via an AND condition. The order of AND-combined subqueries is implicitly defined:
The subquery addressing components of larger granularity (line 2 returns book elements)
functions as filter for the subquery addressing smaller components (line 1 returns subsections).
As a result, a set of subsection elements within book elements is returned to the user.

This example shows that formulating such queries is definitely not an easy task and even
error-prone for expert users. Hence, this language is not intended to be applied directly
by users. It is supposed to be supported by query generators offering an (interactive) user
interface to formulate queries that are both, syntactically and semantically correct.

Novel approaches for querying XML documents are presented by Woodley et al. [259]. In
their work the goal is to transform natural language queries into the NEXI query language
automatically. Although different, the approaches described comprise four common query
processing steps: (1) detection of structure and content constraints; (2) mapping of structural
constraints onto corresponding XML tags; (3) deriving of NEXI-conform content requirements;
and (4) NEXI query formulation. Three different approaches were tested in the natural
language query track at the INEX workshop in 2005 [233]. An approach proposed by Hassler
is based on template matching of words and part-of-speech tags. Therefore, patterns are used
to extract two kinds of rules handling the structure (s_rule) and the content (t_rule) (see
Figure 2.7). Woodley and Geva suggest a shallow syntactic analysis before applying similar
template matching. Tannier includes deep syntactic analysis complemented by semantic rules
concerning the structure and content. Their experiments showed promising results, even
outperforming the performance of a baseline system.

2.8 Result Presentation and Browsing

In contrast to traditional retrieval results (i.e., a ranked list of documents), the returned items
in structured document retrieval (i.e., a ranked list of document components) are no longer
independent of each other. The result set may include:

� elements of varying granularity (e.g., whole documents, sections, single paragraphs or
figures)

2

2.8 Result Presentation and Browsing 33

1 Find documents or sections that discuss the granularity of learning objects.
VB NN or NN that VB the NN of NN NN .

2

Structural Rules

Find documents or sections that discuss the granularity of learning objects.
VB NN or NN that VB the NN of NN NN .

//(article|sec)

3

Textual constraints

Find documents or sections that discuss the granularity of learning objects.
VB NN or NN that VB the NN of NN NN .

NEXI: //(article|sec)[about(.,granularity “learning objects“)]

find sections that discuss dogs in documents about animals .
VV NN WDT VV NN IN NN IN NN .

structural rules textual rules

//article[about(.,animals)]//sec[about(.,dogs)]

s_rule_1(’.’,’find’//VV {sec}//NN) //sec
s_rule_2(’.’,’in’ {doc}//NN) //article
t_rule_1(’.’,’that’ ’discuss’//VV) [about(.,dogs)]
t_rule_2(’.’,’about’) [about(.,animals)]

find sections that discuss dogs in documents about animals .
VV NN WDT VV NN IN NN IN NN .

Figure 2.7: Query analysis with template matching [233]

� multiple disjunct elements of the same document
� overlapping elements that are in structural relationships (ancestor - descendant of the

same document)

Of course, this puts special requirements on the visualization of these results. A structured
document retrieval system should foremost retrieve the most specific component of a docu-
ment (its best entry point) answering a given query [51]. Starting from this element, other
relevant elements in the document are explored by browsing.

In [109, 108], Großjohann et al. propose a user interface for both, query formulation
and result presentation. The query formulation interface called HyGate [81, 86] aims at
constructing queries in the XIRQL query language in a query-by-example way. The result
presentation interface displays the retrieved document components to the user, reflecting
relationships among elements stemming from the same document. The resulting components
are depicted in a 2D graphic called TreeMap, where each element is displayed as a rectangle.
Child components are drawn as nested within their ancestors rectangle (see Figure 2.8).
Brightness (white means not relevant, dark means highly relevant) is used to reflect a
components achieved score. The concept of TreeMaps is further advanced to Partial TreeMaps
(see Figure 2.9), where elements that are not included in the result set are removed for better
readability.

This approach is extended by Fuhr et al. [87] to cover two additional aspects: (a) structural
relationships among result components (from the same document), and (b) size of the result
components. TextBars (see Figure 2.10), as these graphical representations are called, visualize
a document as a bar that is segmented according to its underlying structure. Above the bar
the title of the document is given. The length of the bar reflects the size of the document
(number of words). According to the size of an XML component, red separators indicate the
borders of different components (index nodes). Segments are colored using different shade

34 2 Structured Document Retrieval: An Overview

a

b e

c d f g

document tree

a

b

e

c d

f g

treemap

Figure 2.8: XML tree and its TreeMap [109]

Figure 2.9: Result presentation with Partial TreeMaps [87]

factors reflecting their relevance to the query, where white means not relevant at all and black
means totally relevant.

Figure 2.10: Result presentation with TextBars [87]

2

2.9 Retrieval Evaluation 35

2.9 Retrieval Evaluation

A key issue in information retrieval, and thus in structured document retrieval, is the
evaluation of the retrieval performance. A solid evaluation of any IR-related system requires
(1) a predefined document test collection (corpus), (2) a set of tasks a system has to perform
(queries, topics), and (3) precisely defined evaluation metrics reflecting the retrieval quality.
These preconditions enable system developers to determine the performance of a system and
create the basis for an impartial comparison of heterogenous systems dedicated to the same
tasks.

Currently much research is done in the field of structured document retrieval evaluation.
An initiative that is devoted solely to this topic is the INitiative for the Evaluation of XML
retrieval (INEX) [82, 89, 91, 90, 88, 92], organized by the European DELOS1 Network of
Excellence for Digital Libraries.

One of the main tasks of INEX is to provide a framework for querying and retrieving XML
document components not only via content but also via structural constraints. It includes

� a large collection of real-world XML documents,
� a set of user queries called topics,
� relevance-assessed results of experts for each topic, and
� evaluation measures.
Every year the INEX workshop held in Dagstuhl Castle in Germany brings together

experts from around the world, which are discussing aspects of retrieval methodology and
models, evaluation measures and strategies, query languages, and future research directions.
Each participating research group evaluates their system and reports the achieved results at
the workshop. The workshop is structured into several tracks. The last workshop held in
December 2007 embraced the following tracks [92]:

Ad Hoc Retrieval Standard INEX track evaluating the retrieval performance of structured
document retrieval systems.

Book Search Investigates book-specific relevance ranking, user interfaces and behavior, spe-
cial issues such as book indexes, and linkage to external sources such as metadata
catalogue information.

Document Mining Tests machine learning methods for structured documents and evaluates
their performance, focusing on XML classification and XML clustering.

Entity Ranking Compares and evaluates techniques for returning ranked XML components.

Heterogenous Collections Treats interoperability issues of documents from different sources
(different structure, different tags, different coding).

1http://delos-noe.iei.pi.cnr.it/ (08.02.2008)

36 2 Structured Document Retrieval: An Overview

Table 2.1: Development of INEX
Groups Papers Collection Tracks

INEX 2002 49 23
12107 docs
494 MB
60 topics

Ad Hoc Retrieval

INEX 2003 46 28
12107 docs
494 MB
60 topics

Ad Hoc Retrieval, Interactive, Heterogeneous
Collection, Relevance Feedback, Natural
Language

INEX 2004 59 34
12107 docs
494 MB
60 topics

Ad Hoc Retrieval, Interactive, Heterogenous
Collection, Relevance Feedback, Natural
Language

INEX 2005 64 59
16819 docs
764 MB
87 topics

Ad Hoc Retrieval, Interactive, Heteterogenous
Collection, Relevance Feedback, Natural
Language, Document mining, Multimedia

INEX 2006 85 57
659388 docs
4,6 GB
130 topics

Ad Hoc Retrieval, Interactive, Heterogeneous
Collection, Relevance Feedback, Natural
Language, Document Mining, Multimedia, Use
case studies, XML Entity Ranking

INEX 2007 105 60
659388 docs
4,6 GB
130 topics

Ad Hoc Retrieval, Heterogeneous Collection,
Document Mining, Multimedia, Entity Ranking,
Link the Wiki, Book Search

Link-The-Wiki Analyzes the approaches to automatic link discovery.

Multimedia track Focuses on the retrieval of multimedia components.

INEX was first organized in 2002 and involved around 50 participating groups from
around the world. In the beginning INEX classified the approaches into three categories [103]:
IR model-oriented, DB-oriented, and XML-specific. One year later the categorization was
changed into model-oriented and system-oriented approaches [93]. Table 2.1 briefly summa-
rized the historical development of INEX reflecting its increasing approval and importance
throughout the scientific community.

2.9.1 Corpus

In the year 2002 a test collection containing 12.107 documents was created by INEX. The
documents stemmed from 12 magazines and 6 transactions of the IEEE Computer Society
covering a period of 1995–2002, with a total size of 494 megabytes of raw XML files containing
no pictures or multimedia content. 169 different XML tags were used for markup. For two
years the collection stayed nearly the same, only with some work spent on the correction of
inconsistent syntax and structure of the XML files. On average each document contained
1.532 XML elements with an average nested depth of 6,9. In 2005, the collection was extended
by 4712 new articles (16.819 documents) from the period 2002–2004, reaching a total size of
764 megabytes. Also, the number of unique tags increased to 192.

2

2.9 Retrieval Evaluation 37

Preliminary results of this work were evaluated and presented at the INEX workshop in
2005. In order to be comparable and to show improvements achieved, this work sticks to the
INEX 2005 document collection throughout all experiments.

In 2006 INEX adopted the Wikipedia document collection which is freely available on the
internet comprising 659.388 XML documents. The documents, in contrast to the previous
collection, make heavy use of internal and external linkage. In total the collection size is about
4,6 gigabytes of plain XML files, where each document on average consists of 161,35 XML
elements in a nested depth of 6,72. The documents are structured according to the Wikipedia
template, making use of about 5.000 different tags.

2.9.2 Topics

Each year the INEX topics (queries) used for the currently organized workshop are created by
the participating groups themselves. Each group hands in a set of potential topic candidates
from which the most appropriate are selected for evaluation. An example INEX 2005 topic is
given in Listing 2.3. It consists of an initial topic statement, a title, a short description, a long
description explaining the idea and the expected result, and its corresponding NEXI query.

INEX distinguishes two types of topics:

Content-Only (CO) queries that contain only constraints on the content. No structural infor-
mation where to find the information nor any hint which elements should be returned
is provided. The system has to search the collection and decides on its own which
elements to return and how the ranking is done.

Content-And-Structure (CAS) queries allow to specify constraints on the content, the struc-
ture, or in most cases both. These queries require profound knowledge about the
underlying document structure and are expressed in the NEXI language (<castitle>
element in Listing 2.3).

Whereas the ranking for the CO queries is only a matter of content, CAS queries put much
more effort on the ranking mechanism in order to combine multiple relevance values regarding
the content and structure. For evaluation purpose CAS queries are interpreted in two ways:
strict (SCAS), where only the specified target components are allowed to be returned; and
vague (VCAS), where specified target components are treated more like preferences than
strict conditions.

The optimal human answers are assessed manually by the participating groups. Each
group evaluates two to three topics which takes about two weeks per topic. With the use of
an online XML browser and markup tool, the whole collection is skimmed through for a topic
and relevant answer elements are marked up and classified with respect to their exhaustivity
and specificity. Results of participants assessing the same topic are cross checked to minimize

38 2 Structured Document Retrieval: An Overview

Listing 2.3: INEX topic example (2005)
� �

1 <inex_topic topic_id="231" query_type="CO+S" ct_no="98">
2 <InitialTopicStatement>
3 I’m interested in the applications of markov chains in graph theory.
4 </InitialTopicStatement>
5 <title>
6 markov chains in graph related algorithms
7 </title>
8 <description>
9 Retrieve information about the use of markov chains in graph theory and in

10 graphs-related algorithms.
11 </description>
12 <narrative>
13 I have just finished my Msc. in mathematics, in the field of stochastic
14 processes. My research was in a subject related to Markov chains. My aim is
15 to find possible implementations of my knowledge in current research. I’m mainly
16 interested in applications in graph theory, that is, algorithms related to
17 graphs that use the theory of markov chains. I’m interested in at least a short
18 specification of the nature of implementation (e.g. what is the exact theory
19 used, and to which purpose), hence the relevant elements should be sections,
20 paragraphs or even abstracts of documents, but in any case, should be part of
21 the content of the document (as opposed to, say, vt, or bib).
22 </narrative>
23 <castitle>
24 //(sec|p|abs)[about(.,+"markov chains" application "graph theory")]
25 </castitle>
26 </inex_topic>
� �

inaccuracies. After finalizing the topics assigned, INEX grants access to all available topic
assessments.

2.9.3 Metrics

In order to measure the performance of information retrieval systems one needs to define
formal metrics. In traditional information retrieval, the standard metrics recall and precision
are used [21]. In contrast, result sets in structured document retrieval consist of document
components of varying granularity which may contain overlapping elements. Thus, these
metrics are not appropriate to reflect the retrieval quality in all its facets [240].

INEX proposes a set of metrics for the evaluation of such systems to deal with that
difficulty. Hence the retrieval task in INEX is defined as returning XML components that are
most specific and exhaustive [103], these two aspects have to be defined more clearly [93].
Exhaustivity expresses the extent to which an element covers the topic, and specificity means
how focused an element is on the topic. Both dimensions are rated using a four-degree scale:
(0) not, (1) marginally, (2) fairly, and (3) highly. Out of the 16 possible combinations, 10

2

2.10 Summary 39

meaningful ES tuple (Exhaustivity-Specificity) are taken [195].

ES = {(0, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

In order to apply different evaluation metrics, the two relevance dimensions are mapped onto
a single relevance scale by a quantization function fquant(e, s) : ES→ [0, 1]. INEX 2002 used
two variants of quantization functions [103], a strict one (Equation 2.5) and a generalized one
(Equation 2.6). Later on, additional variants of fgen are introduced with more focus put on
either of the two dimensions.

fstrict(e, s) =

{
1, i f (e, s) = (3, 3)
0, otherwise

(2.5)

fgen(e, s) =

1, i f (e, s) = (3, 3)
0, 75, i f (e, s) ∈ {(2, 3), (3, 2)}
0, 50, i f (e, s) ∈ {(1, 3), (2, 2), (2, 1)}
0, 25, i f (e, s) ∈ {(1, 1), (1, 2)}
0, i f (e, s) = (0, 0)

(2.6)

Additional metrics proposed by and used at INEX (precall, XCG, nXCG, T2I, and PRUM)
are described in detail in [150, 195].

2.10 Summary

Online document repositories and digital libraries increasingly rely on structured documents.
Hence, structured document retrieval methods become more and more important. This
chapter introduced the challenges of searching within structured documents and provided
answers how upcoming difficulties can be handled. A brief overview of ongoing research in
the area is given. The main tasks of information retrieval, namely indexing and retrieval, were
discussed in detail. As the presentation of retrieval results poses several difficulties one does
not face in traditional information retrieval, two graphical approaches, treemaps and TileBars,
were presented. Most important to prove the success of a new structured document retrieval
approach is an extensive evaluation and comparison to similar systems. To do this, this work
reverts to INEX, which is dedicated to the evaluation of XML retrieval systems. To assure
comparability INEX provides a document collection, topics (queries and their assessments),
and evaluation metrics.

3

Chapter 3 Simplicity does not precede complexity, but follows it.

Alan J. Perlis

Document Format, Storage, and

Representation

This chapter is concerned with the most simple XML document format that could possibly
work as a means to express structure, content, and metadata of text documents. By trans-
forming documents into this generic schema the foundation for efficient storage and retrieval
is laid. Typing, associated with tailored search predicates, supports sophisticated matching
of information contained in different XML components. In order to compare the content
of document components, the content of descendants is aggregated upwards contributing
to the content of the ancestors, allowing to apply traditional information retrieval models.
Therefore, two different modifications of the vector space model, one using a static term
space and another one using dynamic term spaces, are presented. As a result documents of
any source and of any format are represented in the same way, enabling fast and elaborate
retrieval of documents and document components.1

3.1 Introduction

As soon as speaking of structured documents the question of ‘what is structured’ and ‘how is
the structure expressed’ comes up. Usually, the logical structure of a document is covered by
terms like ‘chapter’, ‘section’, ‘paragraph’, or ‘figure’, where the order of structural elements is
of importance (i.e., the introduction always comes before the conclusion). Nesting of elements
is used to summarize related contents under a common topic.

Unfortunately, there exists no standardized set of terms that describes the structure of
a document. Also, no guidelines or limitations for proper structuring – as the number of
allowed child elements or the maximum depth of nesting – are available. On the one hand
this leaves much room to individually structure documents, on the other hand it complicates
structured document retrieval tasks.

1Parts of this chapter have already been published in [124, 120]

41

42 3 Document Format, Storage, and Representation

Furthermore, the structure is tightly coupled to the intensions of an author in organizing
the text. Important contents are introduced at the beginning and recur several times as the
text evolves. Deeper nested contents provide more details, whereas contents at higher levels
overview a topic. Different authors tend to structure their texts differently, so there is no
consistency inherent in a set of documents written by different authors. Even single authors
rarely stick to their way of structuring different documents over a longer period of time.
This structural heterogeneity often leads to inconsistencies and ambiguities, especially in
large-scale document management systems [172, pp. 201].

Besides heterogenous document structures, a wide variety of document formats are used,
calling for diverse access methods. Both, heterogeneity of document structures and document
formats make it hard for retrieval systems to perform well. Besides constraints on the content,
queries addressing structured documents may contain additional restrictions on the structure
or context (span of components). In the context of XML documents another issue arises:
Documents on the net mostly come without any schema specification making it hard to guess
which structural element contains which content.

In order to take care of these difficulties this work proposes to map incoming documents of
arbitrary structure and format onto a single generic XML document format. The advantages
of this procedure is that most of the inconsistencies and ambiguities can be resolved at a very
early stage of retrieval. The consequences include:

� Homogenous documents regarding their structure and format (XML) exist.
� Common access methods to address the content of XML components are possible.
� Adoption of data types and sophisticated search predicates for specific contents.
� Definition of index objects based on a components’ name or data type.
� Support of structural vagueness and semantic relativism of components [85] due to the

mapping onto single distinct elements.
� Application- and domain-specific definition of retrieval units becomes possible.

In the sequel a brief overview of related work is given. All subsequent sections and chapters
present the achievements obtained in this work. In Section 3.3, a minimal XML document
schema that fits these requirements is defined. Efficient storage of the mapped documents
using a relational database is described in Section 3.4. Based on the stored information,
representation issues of arbitrary document components are outlined in Section 3.5. A short
summary concludes the chapter.

3

3.2 Related Work 43

3.2 Related Work

3.2.1 Typing of Structural Entities

Gövert [101] describes several extensions of search predicates that are added to the HyREX
search engine. These predicates are based on different data types organized in a type hierarchy
(see Figure 3.1). Each data type supports a set of search predicates which are inherited by

Base
isEqual()

...
Date

less-than()
greater-than()

Text
contains()

contains_phrase()

PersonName
phonetic-similar()

strict()

English
contains-normalized()

German
contains-normalized()

Figure 3.1: Inheritance hierarchy on data types (cf. [101])

its subtypes. The predicates implement type-based matching methods for names that sound
similar or are abbreviated forms, geographical closeness of locations, interval restrictions of
time and date specifications, similarities of chemical structures, and several grades of text
processing.

3.2.2 Storage

Florescu and Kossmann

Florescu and Kossmann [73] describe eight different approaches how XML documents can be
mapped onto relational database tables. They evaluated their approaches using approximately
80 megabytes of XML documents. Their results show that best performance is achieved by
using separate attribute tables in combination with inlining the corresponding element values.
Another finding is that more sophisticated approaches may hurt retrieval performance more
than they help.

Schmidt, Kersten, Windhouwer, and Waas

Schmidt et al. [223] propose a data model based on complete binary fragmentation of the
document tree. In order to store the XML documents they rely on the relational Monet
database engine.

44 3 Document Format, Storage, and Representation

The Monet transform Mt decomposes an XML document tree into binary parent-child,
node-attribute, and node-rank relations of the same type. Mt of a document d is given by the
tuple

Mt(d) = (r, R, A, T)

where r is the root of the document, R is the set of binary relations between parent and
child nodes, A is the set of binary relations between nodes and attributes, and T is the set of
binary relations between nodes and their rank. Each of the R, A, and T relations is stored
in separate database tables that are further decomposed according to the parent and child
elements involved. The decomposition process of a document is linear in time and space.

For evaluation purpose three different document collections are used: ACM Anthology
(46,6 MB), Shakespeare’s Plays (7,9 MB), and Webster’s Dictionary (56,1 MB). In their experi-
ments they show that the size of the Monet XML format (44,2 MB, 8,2 MB, 95,6 MB) strongly
depends on the original XML documents. Higher heterogeneity of the document structure
increases the amount of database tables needed, peaking in 2587 tables for the Webster’s
Dictionary. Quantitative assessments show that the approach scales linear in the size of the
XML document collection regarding both, storage and retrieval.

Grust

Grust [112] describes a relational index structure for XML documents. It allows a complete
reconstruction of stored documents. Table 3.1 overviews the thirteen axes supported by XPath.
The main focus of Grust settles on supporting four major axes exploited for retrieval, namely
descendant, ancestor, following, and preceding relations.

Table 3.1: Semantics of XPath axes [112]
Axis Result forest of a node v
child direct element child nodes of v
descendant recursive closure of child
descendant-or-self like descendant, plus v
parent direct parent node of v
ancestor recursive closure of parent
ancestor-or-self like ancestor, plus v
following nodes following v in document order
preceding nodes preceding v in document order
following-sibling like following, same parent as v
preceding-sibling like preceding, same parent as v
attribute attribute nodes of v
self v
namespace namespace nodes of node v

3

3.3 The Most Simple XML Document Format 45

Therefore, he suggests a five-dimensional descriptor

desc(v) = 〈pre(v), post(v), par(v), att(v), tag(v)〉

to encode structural elements, where pre (resp. post) is an ID assigned through a preorder
(resp. postorder) traversal of the document tree, par is the parent node, att is a boolean
value distinguishing XML attributes (att = true) and XML elements (att = f alse), and tag is
the actual name of the XML attribute or XML element. One has to note that both pre- and
postorder are unique within a document and can be used as primary keys. Both numbers are
initialized with 1, so the root node of the document starts with pre = 1. The parents preorder
ID par is stored for the sake of ancestor and descendant detection (root nodes are defined as
par = nil). par, in combination with pre and post, allows efficient calculation of the following
and preceding sibling. Both, att and tag are stored for name testing.

Grust points out that insertion of documents into the database is linear in time and size of
the input source. By using an event-based parsing framework for XML documents (e.g., SAX)
only very limited scratch space during storing is needed.

In order to store the content of the elements two, different solutions are feasible: (1)
Inlining the content as a child node of its parent node (like an attribute); or (2) storing the
content in a separate database table using (pre,cdata) tuples where pre is a foreign key pointing
at the corresponding elements preorder ID. Experiments by Florescu and Kossmann [73]
identified the second solution as superior, which is adopted in this work.

Hiemstra

Hiemstra [137] presents the fundamental ideas and starting points for building an XML
retrieval system based on relational database systems. In his work he defines a basic language
model for term weighing and introduces database tables that hold document term statistics,
global term statistics, and XML document structures. For indexing purpose he applies
methods described by Grust [112]. However, he substitutes the node identification based on
preorder and postorder (assigned during two traversals) by starting and ending counters
(assigned during a single traversal), keeping up fast ancestor-descendant detection.

3.3 The Most Simple XML Document Format

From now on, all methods and results described are achieved by the author as part of
this work. One of the primary tasks of information retrieval is the handling of incoming
information. Since this work relies on structured input documents, the usage of a generic

46 3 Document Format, Storage, and Representation

XML document format that satisfies the requirements of structured document retrieval is
proposed.

An XML schema allows to define valid document structures independently of the XML
document instances implementing it. The goal of this section is to identify the minimal
requirements necessary to represent a structured document appropriately for information
retrieval purposes. This first thing to be aware of is the different kinds of information coming
along with structured documents:

Structure refers to the logical structure of a document usually covered by the terms ‘chapter’,
‘section’, ‘subsection’, etc. It defines a hierarchy where the order among the elements is
of importance (i.e., the introduction always comes before the conclusion).

Content is associated with structural elements and defines what an element is about. Content
can be regarded either as (1) flat content, typically referring to paragraphs, tables, and
figures, or alternatively as (2) composite content that consists of recursively combined
descendant contents of smaller granularity.

Metadata provides additional information which is – like content – assigned to structural
elements. It describes the content more clearly without being part of it. Examples
of metadata are the document’s author(s), section titles, text languages, and figure
dimensions.

In order to achieve accurate retrieval results, structure, content, and metadata have to be
treated differently during both phases, indexing and retrieval.

3.3.1 Structure

The hierarchical structure of documents is usually covered by terms like chapters, sections,
and subsections. Sticking to these definitions in a general domain leads to severe incon-
sistencies. For instance, scientific research articles do not provide chapters but consist of
sections, subsections, and subsubsections only. Another problem occurs if these identifiers
are abbreviated (sec, ssec) or cross-language documents are included (capitulo2, Unterkapitel
or Abschnitt3, etc.). As a consequence more abstract definitions of content containers seem to
be necessary.

Therefore, this work introduces a generic document structure (defined through XML
schema) that consists of only three elements: DOC (document), SEC (section), and FRA (fragment).
These three structural concepts manage to reflect any tree-like logical structure inherent in
structured documents.

2Spanish for chapter
3German for section

3

3.3 The Most Simple XML Document Format 47

Figure 3.2 illustrates the transformed document of the introductory example given in
the previous chapter (see Figure 2.1). Titles are included for better comprehension. The DOC

DOC
title=“XML Retrieval“

SEC
title=“Abstract“

FRA

This work ...

SEC
title=“Introduction“

SEC
title=“Outlook“

FRA

Crucial for ...

SEC
title=“Section 1“

SEC
title=“Section 2“

FRA

XML is one ...

FRA

This section ...

SEC
title=“SubSec 2.1“

SEC
title=“SubSec 2.2“

FRA

These days ...

FRA

Based on ...

Figure 3.2: Example of a transformed XML document

element defines the root of the document. This enables all kinds of documents like books,
articles, or news messages to be mapped onto this element. As content DOC elements may
only comprise SEC and FRA elements. SEC is the main structural element of a document.
Sections are defined recursively consisting of other SEC elements (e.g., subsections) and/or
FRA elements (first child element of ‘Section 2’ in the Figure). This allows unlimited nesting of
structural elements (e.g., chapter, section, subsection, subsubsection, segment). FRA elements
are the only elements that carry flat content, defining the leaf nodes of the document schema.
Fragments can be understood as basic building blocks acting as elementary containers for
either plain text (which is the standard) or bytecode (e.g., inlined binary information like
figures and multimedia objects).

From the information retrieval point of view fragments denote the atomic units of a
structured document. Thus, they define the smallest units for indexing and retrieval. Their
granularity strongly depends on the application area and domain requirements. In this work
fragments are defined to fit the size of meaningful portions of texts that are retrievable. Some
domains may require a deeper structure with much smaller fragments comprising sentences
or even single terms, while others need fragments that fit even long text passages. In any case
the granularity of fragments has a major impact on the number of elements in the transformed
XML document and thus on the performance during indexing and retrieval.

Within documents links are supported as a means to express relations among elements.
There exist two types of links, internal and external links. Internal links are links within the

48 3 Document Format, Storage, and Representation

same document including citations (pointing to entries in the bibliography section), figure or
table references within the text (pointing to the actual figure/table), or the table of contents
(pointing to the beginning of sections/subsections). External links refer from one document
to another like reference entries in the bibliography section (pointing to other documents),
hyperlinks (pointing to URLs or email addresses), and file locations (pointing to specific
files/directories).

Each of the three elements (DOC, SEC, FRA) is viewed as a tuple (metadata, content), where
metadata refers to descriptive information of the node itself, while content refers to the content
of the element (dotted rectangles in Figure 3.3). Generally, the first type of nodes requires
database-supported matching during retrieval, while the second type is subject to partial
matching (e.g., VSM). The strict distinction between metadata and content enables different

DOC

metadata content

SEC SEC SECtitleauthor

M. Hassler XML Retrieval
metadata

title

content

SEC SEC

Introduction
metadata

title

content

FRA SEC SEC

Section 2
metadata

title

content

FRA

SubSec 2.1
metadata content

type

text

These days ...

Figure 3.3: Expanded example of a transformed XML document

methods to match queries and document components. Thus, special retrieval focus can be
put on each of these information sources.

3

3.3 The Most Simple XML Document Format 49

3.3.2 Metadata

The metadata block of a node provides element-based complementary information. Examples
of metadata information are a documents author or a sections title. A full list of the metadata
fields for each structural element is given in Table 3.2.

Table 3.2: Supported metadata information
Element Metadata

Document (DOC)
sourcepath, doc_type, title, author,
subtitle, publisher, proceeding, year,
keywords, isbn, price

Section (SEC) sourcepath, sec_type, title
Fragment (FRA) sourcepath, fra_type, title, language

Each of the elements (DOC, SEC, FRA) provides a sourcepath field that keeps a reference to
the source of the information (e.g., URL). By this means the connection between a retrieved
element of the transformed XML document and its original source document is established.
In cases where a reference is not available (i.e., a section within an Adobe Acrobat PDF
document cannot be addressed directly) the field may remain empty. Another metadata
field available to all structural elements is the content type (doc_type, sec_type, fra_type)
which is explained in the next subsection. The remaining metadata fields do not need further
explanations. The reason for the title in the FRA metadata (usually paragraphs without titles)
is that fragments may also refer to figures, tables, or multimedia objects.

Of course the proposed metadata fields have to be chosen according to the application
area and domain. A natural extension of this metadata model is to allow multiple entries with
the same name and sub-structured metadata. Although not exploited in this work, complex
metadata information can be easily integrated (see Figure 3.4).

metadata

titleauthors

XML Retrieval
person

first name

Marcus

family name

Hassler

person

first name

Karl

family name

Wiggisser

Figure 3.4: Structured metadata example

3.3.3 Content

The content block of DOC and SEC elements only supports SECs and FRAs as valid child
elements. In contrast, the content of FRA elements is not further nested. Such a definition

50 3 Document Format, Storage, and Representation

completely avoids mixed content nodes containing both, content and substructures. This
in turn eases the implementation of retrieval systems regarding the storage, indexing, and
retrieval functionalities.

As already mentioned, the proposed structure defines a fragment as the smallest structural
unit which is in most cases a plain text block. However, restricting the content to paragraphs,
enumerations, lists, tables, definitions, theorems, proofs, references, algorithms, equations,
formulae, and code listings might seem too restrictive. It is important that a fragment could
also refer to figures, pictures, videos, sounds, and other multimedia material. At this point the
XML document format offers a possibility to include inlined binary data in form of bytecode
in the document. Although such information has to be interpreted before being used it
enables a single document to store any kind of contents.

Within a fragments textual content, semantic markup is useful to support additional

� layout information
� mathematical environments
� linkage
� footnotes
� etc.

Layout information is not exploited for retrieval purpose. It is reduced to a single <emph>-tag
to express emphasis on a term or text passage. Mathematical expressions and formulae within
a text are marked by <math>-tags. Both kinds of links, internal and external, are supported
by a <link>-tag that encloses the text to be linked. This tag also specifies the type (internal
or external) and the destination (anchor within the document or address to the external
resource). Footnotes are resolved as internal links to special footnote sections inserted at the
end of a document. A footnote is realized as a section because it may contain more than a
single paragraph. This concept can easily be extended to fit sub-structures of more complex
contents (e.g., table-like HTML markup), enabling more appropriate analysis and matching
mechanisms. Although these sub-structure elements are queryable the smallest retrievable
unit remains the whole fragment.

However, the content block of elements is not mandatory. This allows the inclusion of
contents by exploiting their metadata information (i.e., if content is not read- or analyzable)
only. Further, it can be used to outsource external contents by referring to it (e.g., a picture or
dynamically generated content somewhere on the net), which in turn reduces the size of the
XML documents.

3.3.4 Typing of Structural Elements

Proper retrieval results always involve a certain level of content interpretation and structural
knowledge. It plays a central role in satisfying the users needs during retrieval. Therefore,

3

3.3 The Most Simple XML Document Format 51

semantic typing of content and metadata is applied to enhance retrieval performance. The
proposed types in this section are developed to fit the context of this work. They were never
regarded as a complete set and are intended to be extended according to the application
domain.

Typing of Metadata

Being XML elements, metadata fields contain ordinary strings. Although XML schemata
allow for rudimentary type specification of nodes (e.g., xls:type=’integer’), generally the
very same content is valid in many different fields. For instance, both the title and the ID of a
document may be defined as simple strings. Clearly these fields have to be treated differently
when being compared to a query. Thus, semantic information about the content of metadata
fields is needed to match them appropriately. In order to achieve this, metadata types are
exploited that are assigned to single metadata fields.

To allow a semantic interpretation of the content of an XML element, a type hierarchy is
proposed by Gövert [101].

A similar model is applied for typing of metadata fields. The type hierarchy used is
depicted in Figure 3.5. There, types are derived from a common base element. The first
level in the hierarchy (gray-shaded rectangles) corresponds to database supported data types.
Thus, they can be used to assign types to the columns of database tables. More specialized
types in subsequent levels in the hierarchy have one of the basic database types as supertype
(e.g., PersonName is a String). Accordingly, the assigned types also imply certain restrictions
on the content and formatting (e.g., DateTime format, URL format) of metadata fields.

Base

BlobDateTimeStringNumber

PersonName Title Location

English German

ISBN PricePhone URL...

...

... Keywords

Figure 3.5: Hierarchical metadata types

Associated with the metadata types are custom-built implementations of predicates for
comparison. This allows special searching of single metadata fields on different structural
levels (e.g., section titles, phone numbers, author names).

For instance, the type PersonName identifies the content of a metadata field such as the
name of a person. Generally, names include a family name and one or more forenames. In

52 3 Document Format, Storage, and Representation

user queries, multiple forenames or unknown forenames are often abbreviated by their initials.
Although family names and forenames cannot be distinguished automatically, initial letters
of names can be matched during retrieval. Consider documents written by an author named
Albert Einstein and a user query containing A. Einstein. In this case typing allows a
similarity calculation (0 ≤ sim ≤ 1) between these two strings, resulting in a higher similarity
value (e.g., 0, 9) than a comparison with H. Einstein (e.g., 0, 6). This is also true for
abbreviated family names like E. Albert. However, more detailed metadata information (i.e.,
a PersonName that consists of a PersonFamilyName and PersonForeNames) is able to handle
even complex comparisons in a correct manner (see Figure 3.4). Keywords separated by
commas can be split and compared in a boolean manner. Titles might be analyzed and
compared in more detail using stopword removal or (shallow) syntactic parsing. Also,
high-level similarities of Phone numbers based on their area code or geographic closeness of
Location types can be realized by these predicates.

Another important factor to find commonalities of queries and metadata information is
the normalization of content. By transforming special types (e.g., times and dates, phone
numbers, prices) to a common format, similarity computation becomes more exact. It is also
simplified and speeded up.

Typing of Content

For indexing and retrieval purposes the content of DOC, SEC, and FRA is classified according
to several content types. These types can be addressed within queries and enable to focus
on particular subsets of elements. For instance, only books, sections of type introduction,
or references might be searched. Figure 3.6 presents the content types supported for
each content container (gray-shaded rectangles). Again, the proposed content types are not
regarded as a final list and have to be chosen according to both, the application and the
domain.

3.4 Storage

A central issue of retrieval systems is their performance. This includes the way documents
are stored and accessed. Especially in the context of structured documents, efficiency during
retrieval of components of any granularity must be provided. Generally, three different
alternatives for storing XML documents have been proposed in the literature [153, 104]:

� Special purpose database systems (e.g., Rufus [228], Lore [15, 177], Strudel [70]) work
best as they are scalable and meet the storage requirements to handle huge data loads.
Unfortunately, these systems are tailored for special domains and applications. Thus,
they are not very flexible.

3

3.4 Storage 53

Content containers

FRASECDOC

abstract

introduction

conclusion

article

news

book

references

acknowledgements

curriculum vitae

appendix

footnote

formula

parapraph

list

table

reference

definition

theorem

proof

algorithm

code

Figure 3.6: Content types

� Object oriented database systems (e.g., O2 [23]) and native XML stores (e.g., Timber [142],
eXist [178]) are optimally suited to store complex nested data structures. However, when
querying large amounts of data, these systems are not able to compete with retrieval
performance of special purpose database systems or relational database management
systems.

� Relational database management systems have been well proven in the information
retrieval domain. They provide maturity, stability, portability, and scalability [226].
Mapping XML documents appropriately to fit the relational paradigm seems to be a
promising solution that meets the storage requirements for structured documents [111].

In this thesis a relational database is used to store the XML documents. The goal is
to accelerate the access to various structural neighbors of a node in the document tree
(descendants, ancestors, and siblings). In order to process the transformed XML documents
efficiently not all nodes are stored in the database. Pure artificial elements used for content
distinction, the metadata and the content block, are neglected. Further, the set of metadata
elements is treated differently as described in the sequel.

This work departs from the idea of opening (pre) and closing (post) node identifiers
introduced in [112, 137]. The access efficiency comes from the fact that pre and post descriptors
are unique for a given document and, therefore, can be used conjointly with the ID of the
document as primary key in the mapped relational schema. Both, pre and post are assigned
straight-forward to the nodes of a document in a single preorder traversal (root first, then

54 3 Document Format, Storage, and Representation

children from left to right) by keeping track of opening and closing tags. Figure 3.7 depicts
an example with pre (number to the left) and post (number to the right) IDs assigned to each
node.

DOC

SEC

FRA

This work ...

SEC SEC

FRA

Crucial for ...

SEC SEC

FRA

XML is one ...

FRA

This section ...

SEC SEC

FRA

These days ...

FRA

Based on ...

1

2

3 4

5

7 10

6 23

8 9 12 13

11 22

14 17

15 16

18 21

19 20

24 27

25 26

28

Figure 3.7: Transformed XML document with pre and post identifiers

During retrieval, pre and post identifiers imply a number of useful features:
� The root DOC always starts with pre = 1.
� Child nodes of the same parent node are continuously numbered, where pre of a

subsequent element equals post + 1 of the preceding element (e.g., the three uppermost
SEC nodes: 2-5,6-23,24-27).

� The number of all descendant nodes is given by post−pre−1
2 .

� FRA elements define the leaf nodes of the tree and are identified through the equation
post− pre = 1.

� Containment of two nodes (ancestor-descendant relation) is defined by pre_ancestor <

pre_descendant and post_ancestor > post_descendant. Thus, no recursive computation
to detect ancestor-descendant relations is needed.

Table 3.3 shows the structural entries for the document given in Figure 3.7. A structural
entry is described by the tuple (doc, pre, post, parent, tag, path). doc refers to the document,
pre and post are the numeric node identifiers, parent is the pre identifier of the parent node
in the same document, tag is the XML tag naming the component, and path denotes the
common path (see Definition 3.1) to the root of the document. The root element (pre = 1) has
per definition no parent. tag is included for fast name lookup and access. For the sake of
retrieval performance each entry includes its common path. For queries specifying the path
of a document component, a great deal of recursive path generations using the parent and
tag attributes is avoided.

3

3.4 Storage 55

Definition 3.1 [Common path]: The common path of an XML component is defined as
the XPath to the root of the document (e.g., /DOC[1]/SEC[3]/FRA[1]) without positional
information (e.g., /DOC/SEC/FRA).

Table 3.3: Relational entries for the structure
doc pre post parent tag path
d1 1 28 - DOC /DOC
d1 2 5 1 SEC /DOC/SEC
d1 3 4 2 FRA /DOC/SEC/FRA
d1 6 23 1 SEC /DOC/SEC
d1 7 10 6 SEC /DOC/SEC/SEC
d1 8 9 7 FRA /DOC/SEC/SEC/FRA
d1 11 22 6 SEC /DOC/SEC/SEC
d1 12 13 11 FRA /DOC/SEC/SEC/FRA
d1 14 17 11 SEC /DOC/SEC/SEC/SEC
d1 15 16 14 FRA /DOC/SEC/SEC/SEC/FRA
d1 18 21 11 SEC /DOC/SEC/SEC/SEC
d1 19 20 18 FRA /DOC/SEC/SEC/SEC/FRA
d1 24 27 1 SEC /DOC/SEC
d1 25 26 24 FRA /DOC/SEC/FRA

There are two possible ways to store the content of document elements [112]: (1) inline the
content as a child node of its parent (like an attribute); or (2) store the content in a separate
table with a foreign key pointing to the correct element. The second method has been proven
to be superior [73] and is adopted in this work.

The content of nodes (in particular of fragments) is kept in a separate database table (see
Table 3.4). Contents of inner nodes (SEC and DOC elements) do not have to be stored explicitly
because they can be recovered dynamically from the descendants’ contents. Finding a balance
between retrieval performance and storage space, dynamically recovered inner node contents
can be additionally (or temporarily) preserved in the content table. This allows to retrieve the
content of an inner node by a single database query instead of computing it recursively from
multiple descendant nodes.

Table 3.4: Relational entries for the content
doc pre data
d1 3 This work ...
d1 8 XML is one ...
d1 12 This section ...
d1 15 These days ...
d1 19 Based on ...
d1 25 Crucial for ...

The concept of separating content and structure opens up the possibility to maintain
multiple contents for each structural element. Hence content can be represented in various
forms, this is a major advantage for information retrieval. At least two (independent) content

56 3 Document Format, Storage, and Representation

tables are needed: one for saving the original plain content and another one for saving its
representation.

During indexing of a new XML document, plain contents restricted to leaf nodes are stored
in the database first. Afterwards, content representations of the stored leafs are computed
(and recalculated on demand) without accessing the XML file again. Additionally, contents
and content representations of inner nodes can be calculated and stored in the database.
Therefore, not every content in the database must have a corresponding content representation
(i.e., inner nodes).

Since this work focuses on the representation of natural language texts, contents such as
figures or formulae are unsuited for textual representation. However, additional representa-
tions of these contents (e.g., bitmaps) can be integrated easily by adding new representation
tables.

In order to improve retrieval performance metadata handling is completely shifted to the
database. This is achieved by grouping all metadata fields according to their element. Instead
of having multiple entries in the structure and content tables, a single tuple (doc, pre, meta1,
. . . , metan) lumps together the set of metadata fields in a single database entry. Metadata
of elements (DOC, SEC, FRA) is stored in separate but similar tables as shown in Table 3.5 for
sections.

Table 3.5: Relational entries for metadata (section level)
doc pre title sec_type ...
d1 2 Abstract abstract
d1 6 Introduction introduction
d1 7 Section 1
d1 11 Section 2
d1 14 SubSec 2.1
d1 18 SubSec 2.2
d1 24 Outlook conclusion

Although the same elements on different hierarchical levels may implement different sets
of metadata (i.e., sections in proceedings may state an author but subsections do not), the
approach taken in this work assumes that all elements of the same type (DOC, SEC, FRA) have
the same metadata fields. This may lead to numerous NULL values (unavailable metadata
for some elements) in the database. However, the whole set of metadata can be accessed by a
single select operation. This both simplifies and speeds up querying of metadata considerably.

3

3.5 Document Representation 57

3.5 Document Representation

The representation of structured documents relies on XML documents that implement the
generic schema introduced in Section 3.3. As a starting point, the three structural components
document (DOC), section (SEC), and fragment (FRA) serve as index objects.

Since fragments are the leafs in the document tree, their content has to be indexed first.
Therefore, methods from the field of natural language processing transform the textual content
(e.g., paragraphs, lists) into term frequency vectors as described in the next two chapters. In
order to index inner nodes (sections and documents) the representations of descendants are
recursively merged using a propagation of term statistics (see Section 2.5). This operation is
equivalent to process the concatenated contents of the descendant nodes.

The actual weighing of the term frequency vectors is carried out during retrieval using the
traditional vector space model (Equations 2.3–2.4). Based on the weighed feature vectors the
similarity between document components and user queries is computed. However, weighing
includes the inverse document frequency (Equation 2.2) as a means to exploit corpus-based
statistics. In the domain of structured document retrieval, the notion of ‘document’ has to be
reconsidered: What elements are regarded as a valid ‘document’? Is it the DOC component
which comes closest to the original definition? Perhaps the fragments containing the content
should be counted? Or, are all components (DOC, SEC, FRA) treated as separate ‘documents’?
Obviously, this choice has a major impact on weighing and ranking, and thus on the retrieval
result. In this work two approaches are explored.

� The first approach treats all components (DOC, SEC, FRA) as equal units or ‘documents’.
Their contents are represented within the same term space, which is defined as the
union of all terms stated in all components. Thus, it implements a single static term
space.

� The second approach is more elaborated, utilizing different term spaces for components
on different hierarchical levels. In order to group components according to their term
space, the common path (see Definition 3.1) of an element is consulted. This approach
is referred to as applying dynamic term spaces.

Both approaches are described in the next two subsections. Since the term ‘document’ is no
longer valid for structured documents, the term inverse document frequency id f is substituted
by inverse element frequency ie f [106]. A final comparison of the two approaches outlines
their behaviors.

58 3 Document Format, Storage, and Representation

3.5.1 Static Term Space

In a static term space all component representations are treated as equal. Neither a distinction
between document, section, and fragment components is made, nor is the level in the
document hierarchy considered. All components are processed as a collection of ‘documents’
assumed to be equally important to a query.

Taking this point of view, the vector space model needs only slight changes (Equations 3.1–
3.4), where N (resp. ni) is the total number of document components (resp. components
stating term i).

t fi,j =
f reqi,j

max f reql,j
(3.1)

ie fi = log
N
ni

(3.2)

wi,j = t fi,j · ie fi (3.3)

sim(dj, q) =
−→
dj • −→q
|
−→
dj | · |−→q |

=
∑t

i=1 wi,j · wi,q√
∑t

i=1 w2
i,j ·
√

∑t
j=1 w2

i,q

(3.4)

Because the cosine similarity implies a certain normalization in the space of document
components [21, pp. 28], the arbitrary length of the contents is accounted for. Term weights
computed on the document level are unequal to term weights achieved by applying the
traditional formulae on the flat content of the same document. The reason for that is that the
inverse element frequency is computed using a much higher number of document components
than the inverse document frequency using the number of documents.

In order to support the calculation of ie fi the database stores (doc,term,n) tuples of the
documents. As the number of entries in this table becomes quite large, a condensed table
holds (term,n) tuples to improve performance during retrieval. If documents or document
components are added, altered, or removed both data structures are updated accordingly.

3.5.2 Dynamic Term Spaces

Another approach is to exploit structural information to define multiple term spaces that
better represent components on the same level in the hierarchy. Two assumption are that
these components (1) are of similar granularity and length, and (2) use only a portion of the
complete term space. To achieve this, the common path (see Definition 3.1) is used to cluster
the components accordingly.

Based on the common path, the context of a node is defined as the set of all components
having the same path (all chapters, all sections, all fragments within subsections, etc.). To fit
this requirement, the vector space model adaptation is given by the Equations 3.5–3.8. The

3

3.5 Document Representation 59

inverse element frequency ie fi,c is calculated dynamically based on a node’s context c, where
Nc (resp. ni,c) is the number of document components in context c (resp. components in the
context c stating term i).

t fi,j =
f reqi,j

max f reql,j
(3.5)

ie fi,c = log
Nc

ni,c
(3.6)

wi,j = t fi,j · ie fi,c (3.7)

sim(dj, q) =
−→
dj • −→q
|
−→
dj | · |−→q |

=
∑t

i=1 wi,j · wi,q√
∑t

i=1 w2
i,j ·
√

∑t
j=1 w2

i,q

(3.8)

For the sake of term weighing, different ie fi,c values of the same term i in different contexts
c are used. As a consequence, this strategy weighs the same term with the same term
frequency differently depending on context c (e.g., chapter versus subsection). Clearly this
approach puts more attention on the actual context during retrieval. If the unit of retrieval is
defined explicitly, elements in this context are focused. Representations of elements in other
contexts do not influence the result. This allows to perform focused retrieval on any level in
the document tree.

Generally, term spaces of different contexts imply a containment constraint: The term
space of components of larger granularity subsumes the term space of components of smaller
granularity. This becomes clear since the /DOC term space obviously is the superset of the
/DOC/SEC term space, which in turn is the superset of the /DOC/SEC/SEC term space. However,
fragments on different levels in the hierarchy influence the term space of their ancestors
considerably. A nice feature of this approach is that in contrast to a single static term space,
the weighed feature vectors of DOC components exactly match the representations using the
vector space model on flat documents.

Dynamic ie fi,c calculation is accomplished by the database keeping track of
(doc,path,term,nc) tuples in a localIEF table. Compared to a static term space, the
amount of database entries in this table is extraordinary high. To circumvent performance
losses, a compressed data structure of (path,term,nc) tuples is pre-computed and stored in a
globalIEF table. Both tables localIEF and globalIEF are used to compute dynamic as well
as static inverse element frequencies. More details are given in Chapter 8 describing the
system implemented.

60 3 Document Format, Storage, and Representation

3.5.3 An Example: Static versus Dynamic Term Spaces

The best way to illustrate the differences of a static term space and multiple dynamic term
spaces is by means of an example. Consider the query and document given in Figure 3.8. The
document tree contains three fragments and their associated term weights. For demonstration
purpose term weights in fragments are assumed to be equal (0, 5). Due to the propaga-
tion mechanism, term weights at higher levels are decreased (by subtracting 0, 1 for each
level). Furthermore, the query contains a term x that never occurs in any of the document
components.

DOC

FRA 1

a 0.5

b 0.5

SEC

SEC
title=“Chapter 1“

FRA
title=“text 1“

a 0.5

b 0.5

Static term space
Document

c -

d -

SEC
title=“Section 1“

a -

b -

c 0.4

d 0.4

a 0.4

b 0.4

c 0.3

d 0.3

SEC
title=“Chapter 1“

FRA
title=“text 1“

a 0.5

b 0.5

Dynamic term spaces

SEC
title=“Section 1“

a 0.4

b 0.4

c 0.3

d 0.3

Query

a 0.5

b 0.5

d 0.5

x 0.5

Query

a 0.5

b 0.5

c -

d 0.5

Query

a 0.5

b 0.5

c -

d 0.5

Query

a 0.5

b 0.5

FRA 2

c 0.5

d 0.5

FRA
title=“text 2“

a -

b -

c 0.5

d 0.5

c 0.4

d 0.4

e 0.4

f 0.4

FRA
title=“text 2“

c 0.5

d 0.5

Query

c -

d 0.5

sim(chapter,q) = 0,770
sim(section,q) = 0,289

sim(fra1,q) = 0,816
sim(fra2,q) = 0,333
sim(fra2,q) = 0,000

sim(chapter,q) = 0,770
sim(section,q) = 0,500

sim(fra1,q) = 1,000
sim(fra2,q) = 0,577
sim(fra2,q) = 0,000

e -

e -

e -

e 0.5

e 0.3

FRA 3

f 0.5

e 0.5

f -

e 0.3

f 0.3

e 0.4

f 0.4

e -

f -

e 0.5

f -

FRA
title=“text 3“

a -

b -

c -

d -

e -

f 0.5

f -

FRA
title=“text 3“

c -

d -

e -

f - f 0.5

f 0.3

ToDo: SEC 1, SEC 2, FRA 1, FRA 2, FRA 3 plus similarities

Figure 3.8: Initial document and query

In order to compute the similarity sim(dj, q) of a component dj and the query q, both
representations have to be mapped onto a common term space (static or dynamic). Terms i
not stated in a component j are weighed as zero (wi,j = 0). Terms in the query that are not
included in any of the components are neglected because they do not lie in the term space.
The resulting feature vectors of dj and q are of equal length and can be matched according to
the sim(dj, q) formula (Equations 3.4 and 3.8).

Besides its impact on the term weights due to different inverse element frequencies (which
is masked in the example) Figure 3.9 shows the effect of using either a static or dynamic term
spaces.

In a static term space all components and the query are represented using a vector size of
six terms. On the one hand this supports faster mapping (fixed length) and weighing (only a
single ie fi). On the other hand feature vectors become sparser because the largest term space
containing all terms of all components is used, resulting in a drop of performance (longer
feature vectors) and similarity of smaller elements (see Figure 3.9a).

In contrast, using dynamic term spaces means that components and the query are repre-
sented according to the context currently being matched. In the figure, four term spaces are
maintained: /DOC, /DOC/FRA, /DOC/SEC, and /DOC/SEC/FRA (the latter two are the same).

The resulting similarities of both approaches are given in Table 3.6. The first thing to
note is that the ranking of the components according to their similarity stays the same. But

3

3.6 Summary 61

DOC

FRA 1

a 0.5

b 0.5

SEC

DOC

FRA 1

a 0.5

b 0.5

Static term spaceDocument

c -

d -

SEC

a -

b -

c 0.4

d 0.4

a 0.4

b 0.4

c 0.3

d 0.3

DOC

FRA 1

a 0.5

b 0.5

Dynamic term spaces

SEC

a 0.4

b 0.4

c 0.3

d 0.3

Query

a 0.5

b 0.5

d 0.5

x 0.5

Query

a 0.5

b 0.5

c -

d 0.5

Query

a 0.5

b 0.5

c -

d 0.5

Query

a 0.5

b 0.5

FRA 2

c 0.5

d 0.5

FRA 2

a -

b -

c 0.5

d 0.5

c 0.4

d 0.4

e 0.4

f 0.4

FRA 2

c 0.5

d 0.5

Query

c -

d 0.5

sim(chapter,q) = 0,770
sim(section,q) = 0,289

sim(fra1,q) = 0,816
sim(fra2,q) = 0,333
sim(fra2,q) = 0,000

sim(chapter,q) = 0,770
sim(section,q) = 0,500

sim(fra1,q) = 1,000
sim(fra2,q) = 0,577
sim(fra2,q) = 0,000

e -

e -

e -

e 0.5

e 0.3

FRA 3

f 0.5

e 0.5

f -

e 0.3

f 0.3

e 0.4

f 0.4

e -

f -

e 0.5

f -

FRA 3

a -

b -

c -

d -

e -

f 0.5

f -

FRA 3

c -

d -

e -

f - f 0.5

f 0.3

ToDo: SEC 1, SEC 2, FRA 1, FRA 2, FRA 3 plus similarities

f -

(a) Static Term Space

DOC

FRA 1

a 0.5

b 0.5

SEC

DOC

FRA 1

a 0.5

b 0.5

Static term spaceDocument

c -

d -

SEC

a -

b -

c 0.4

d 0.4

a 0.4

b 0.4

c 0.3

d 0.3

DOC

FRA 1

a 0.5

b 0.5

Dynamic term spaces

SEC

a 0.4

b 0.4

c 0.3

d 0.3

Query

a 0.5

b 0.5

d 0.5

x 0.5

Query

a 0.5

b 0.5

c -

d 0.5

Query

a 0.5

b 0.5

c -

d 0.5

Query

a 0.5

b 0.5

FRA 2

c 0.5

d 0.5

FRA 2

a -

b -

c 0.5

d 0.5

c 0.4

d 0.4

e 0.4

f 0.4

FRA 2

c 0.5

d 0.5

Query

c -

d 0.5

sim(chapter,q) = 0,770
sim(section,q) = 0,289

sim(fra1,q) = 0,816
sim(fra2,q) = 0,333
sim(fra2,q) = 0,000

sim(chapter,q) = 0,770
sim(section,q) = 0,500

sim(fra1,q) = 1,000
sim(fra2,q) = 0,577
sim(fra2,q) = 0,000

e -

e -

e -

e 0.5

e 0.3

FRA 3

f 0.5

e 0.5

f -

e 0.3

f 0.3

e 0.4

f 0.4

e -

f -

e 0.5

f -

FRA 3

a -

b -

c -

d -

e -

f 0.5

f -

FRA 3

c -

d -

e -

f - f 0.5

f 0.3

ToDo: SEC 1, SEC 2, FRA 1, FRA 2, FRA 3 plus similarities

f -

(b) Dynamic Term Spaces

Figure 3.9: Static versus dynamic term spaces

Table 3.6: Similarities using static and dynamic term spaces
Context static term space dynamic term spaces
DOC 0,770 0,770
SEC 0,289 0,500
FRA 1 0,816 1,000
FRA 2 0,333 0,577
FRA 3 0,000 0,000

– as expected – the similarities of smaller components (especially fragments) gain much
higher values using the dynamic term spaces. This improves focused retrieval by ranking
more specific components of smaller granularity higher without effecting (decreasing) the
similarity of larger components. A performance evaluation of both approaches using real
world documents is carried out in Chapter 9.

3.6 Summary

This chapter introduced a generic document format for information retrieval and its XML
implementation applied throughout this work. The generic format consists of only three
components (document, section, and fragment), which serve as both index and retrieval
objects. Documents from heterogenous sources are first mapped onto this schema for further
processing. In order to store the documents, a relational database approach has been chosen.

62 3 Document Format, Storage, and Representation

Finally, representation issues are discussed. The focus is put on weighing and ranking,
providing two strategies based on the vector space model: A single static term space approach
and a more elaborated approach reverting on multiple dynamic term spaces are presented.
An evaluation comparing these two approaches is conducted in Chapter 9.

4

Chapter 4 Any noun can be verbed.

Alan J. Perlis

Natural Language Text Representation

Whereas the previous chapter is concerned with the representation of the structure, this
chapter introduces the basic tasks necessary to process the content of the leaf nodes of a
document containing plain natural language texts. The goal is to represent textual content in
a form that can be computed and compared efficiently. The result of this process is a vector
of terms – actually of stems – associated with their frequencies of occurrence. The involved
natural language processing tasks are tokenization, tagging, stemming, and stopword filtering.
These tasks are described in detail.1.

4.1 Introduction

Proper retrieval results depend on appropriate content representations for the documents
searched. Therefore, methods from the field of natural language processing are applied
to compute representations for plain texts. Several works [263, 250] are solely dedicated
to investigate the effects of natural language processing tasks on the information retrieval
performance. It is commonly agreed that this task is a very complex one, including various
processing steps like tokenization, tagging, shallow parsing, stemming, compound splitting,
etc. [32] The result of this processing chain is an appropriate representation of the text. In
order to support retrieval tasks appropriately, the representation has to facilitate

� fast computation and comparison of representations,
� minimal storage requirements, and
� support of high recall and precision in searches.
A major design goal of natural language processing frameworks is to define (1) components

that manage these tasks, their (2) correct processing sequence, where the output of one
component serves as input for a subsequent one, and (3) appropriate data interchange
objects. Components are tightly coupled to these data objects and cannot be used in isolation.
Hence, an easy and approved possibility to transfer data is to utilize structured text files like

1Parts of this chapter have already been published in [122]

63

64 4 Natural Language Text Representation

XML documents. The usage of such a generic data interchange format results in platform,
application, and system independent components. A component can simply be plugged into
an existing system at the moment it is required. Furthermore, XML output is easily adaptable
and can be processed efficiently.

In this work the basic components accomplish the tasks of tokenization, tagging, term
extraction, stemming, stopword filtering, and term frequency computation. The processing
sequence is depicted in Figure 4.1.

Tokenization Tagging

Natural Language Analysis

Term
extraction

StemmingStopword
filtering

Term frequency
calculation

Whereas the previous
chapter is concerned

with the representation
of the structure, this

chapter introduces the
basic tasks necessary to
process the content of
the leaf nodes of a ...

Plain text

Term frequency vector
chapter 2
concern 1

represent 1
structure 1
introduce 1

task 1
process 1
content 1

leaf 1
... ...

Figure 4.1: Natural language processing sequence

Tokenization is the first task of natural language text processing [255, 75]. It segments
the text into meaningful processing units called tokens. The output of the tokenizer serves
as input for a tagger. During tagging syntactic word categories (e.g., verb, noun, adjective)
are assigned to tokens as tags. Based on these tags terms that carry the meaning of the
text are extracted and converted into lower case. Therefore, nouns and verbs are considered
more important than determiners and prepositions. Afterwards a stemmer reduces each
extracted term to its stem. By stemming, the number of distinct terms (size of the vocabulary)
is reduced drastically. Supplementary it enables a matching of different forms of the same
word. For instance, the terms book, books, booking, and booked are all reduced to the single
stem book. In order to get rid of additional unwanted material (i.e., the term computer within
computer science articles may not be very helpful) a list of stemmed stopwords is used for
filtering. Finally, the frequencies of each stem are summed up to reflect its importance.

This chapter starts with presenting related work and natural language related delimination
problems, highlighting the difficulties of boundary detection of both words and sentences. In
the sequel the foundations of the natural language processing steps (tokenization, tagging,

4

4.2 Related Work 65

stemming, stopword filtering in Figure 4.1) are provided. These steps are necessary to
compute content representations for information retrieval and document mining tasks.

4.2 Related Work

4.2.1 Character Sets

A well known language-related problem is the occurrence of special characters (e.g., Slavic
diacritics, umlauts and sharp s in German, etc.). In order to work properly a well-designed
and language-independent core system for natural language text processing has to support
these character sets. Therefore, the Unicode Consortium was founded to develop, extend,
and promote the usage of world-wide Unicode related standards to encode characters [243].
Further, the Unicode Consortium actively develops standards in the area of internationaliza-
tion, including the definition of the behavior and relationships between Unicode characters.
The aim of Unicode is to offer a language-independent solution for text data interchange.
Currently it is regarded as the default standard that specifies the representation of texts in
modern software systems.

4.2.2 Tokenization

One of the first authors dealing systematically with the problems of tokenization was Fox [75]
in 1992. Besides standard tokenization, his work addresses special cases like words containing
numbers, hyphens, special usage of punctuation marks including slashes and underlines, and
the case of letters. For this sake, hand-written finite state automata are applied to resolve
tokenization ambiguities. Further, the work exemplifies how a stopword list is constructed
automatically to support the tokenization machinery.

Webster and Kit [255] provide an initial definition of the token concept. They concentrate
on Chinese texts, where delimiters for words and sentences are not present. Two types
of ambiguities are distinguished, conjunctive ambiguity (two or more neighboring words
are adjacent, compound) and disjunctive ambiguity (a word in between is adjacent with a
previous word and with a following word, double usage of the word in the middle). Two
ways for disambiguation are proposed: (1) application of knowledge-based rules and (2)
application of statistical-based methods borrowed from corpus-linguistics.

Grefenstette and Tapanainen [107] describe a regular expression based treatment of
common tokenization difficulties, including special number formats (e.g., dates, fractions) and
abbreviations. In order to identify sentence borders they run experiments using rules together
with the corpus itself as a filter. First, all possible candidates for sentence ends (i.e., all strings
ended by periods) are tested against a short list of exceptions and a set of identification rules.

66 4 Natural Language Text Representation

Second, if no match is found during the first step, the string without the ending period is
compared to all sentence internal words. In other words it is checked whether the term occurs
as non-abbreviation somewhere within a sentence. In the case that both steps do not come up
with a result, the token is marked as the last word of the sentence.

Giguet [98] addresses the problem of multilingual text tokenization for natural language
diagnosis. The aim is to assign language names to sentences. Because there is no knowledge
about the language in advance, a general and language-independent tokenization method
is applied. Therefore, he proposes a rule-based tokenization approach, addressing common
tokenization problems like elision and the difficulty of merging ordered sets of tokenization
rules.

Strongly related to tokenization is the problem of sentence boundary disambiguation.
Palmer and Hearst [197] point out several difficulties that arise if sentence end markers are
not identified correctly. They propose a machine-learning approach based on neural networks
to tackle this problem. Their implementation system Satz utilizes part-of-speech tags of
preceding and following tokens around potential sentence end markers. These tag sequences
are used to estimate the probability of a true end of the sentence. As the system relies
on machine-learning, it operates in two phases: In a training phase, classification patterns
provided by an expert are learned. The trained knowledge is then applied in a testing phase
to recognize sentence boundaries in unknown texts. Satz executes fast in both, the training
and testing phase, adapts to other corpora and languages, and operates robust regarding the
input.

Guo presents in [116, 117] a one-tokenization-per-source approach that focuses on non-
segmenting languages like Chinese. In contrast to segmenting languages as English or
German, the text comes as a sequence of characters without any delimiters (e.g., blanks,
punctuation marks) between words and sentences. Thus, the difficulty is the identification of
token borders, which is not an easy task. His proposed approach is based on the assumption of
a complete dictionary. Nevertheless, the sentence todayissunday still can be interpreted either
as to day is sun day or today is sunday. To recover from this problem, Guo suggests to
use the document itself as a filter to disambiguate these cases. The system is evaluated using
the Chinese PH newspaper corpus, achieving high accuracy values of up to 99%.

Yamashita and Matsumoto [260] propose a language independent morphological analysis
consisting of three steps: tokenization, dictionary lookup, and disambiguation. Their approach
is applicable for both segmenting and non-segmenting languages. Segmenting languages are
transformed to non-segmenting ones by simply removing all delimiters. They introduce the
notion of a morpho-fragment, which is an intermediate representation between characters
(graphic words separated by blanks in segmenting languages) and lexemes (logical units). Trie
data structures are used to implement efficient dictionary lookup including morphological
information. The final disambiguation step is realized via a hidden markov model. The

4

4.2 Related Work 67

approach is evaluated using the tagged Penn Treebank corpus (97% and 95% precision and
recall), a Japanese tagged corpus (97% precision and recall), and the tagged corpus released
by the Chinese Knowledge Information Processing Group (95% and 91% precision and recall).

Using a minimum of pre-built resources, Mikheev [180] tackles three different tokenization
problems: sentence boundary disambiguation, disambiguation of capitalized words, and
identification of abbreviations. With the help of automatically retrieved word frequency lists
and a small set of heuristics, the corpus itself is used to dynamically infer disambiguation clues.
In order to detect sentence borders unambiguous abbreviations (e.g., abbreviations followed
by a lower case word) are looked up within the document. Based on these occurrences and
local contexts ambiguous abbreviations are resolved. The disambiguation of capitalized words,
which is an important task of text normalization, is closely related to the first problem. This
step partly covers the task of named entity recognition, where three subtasks are distinguished:
identification of unique identifiers (organizations, persons, locations, proper names, product
names, acronyms), identification of temporal expressions (complete or partial times and dates),
and identification of numerical expressions and quantities (monetary values, percentages). As
before, the clues found in unambiguous occurrences are used to resolve ambiguous contexts.
Sentence ends marked by either exclamation marks, question marks, or periods are identified
as central processing units relying on the previous results, abbreviations, and capitalized
words. The system achieves high performance exceeding 99% accuracy on the three tasks
using the Brown Corpus.

4.2.3 Tagging Systems

The Brill Tagger

One of the earliest rule-based taggers that achieves similar results compared to stochastic
taggers was presented by Brill [34, 35]. The approach, called transformation-based error-driven
learning, operates in two phases: During a learning phase, tagging rules are automatically
inferred from a corpus by trying to increase the overall accuracy. In a testing phase, each
word is initially assigned its most likely tag without considering any context. Therefore, the
tagger is provided with two clues: capitalized words tend to be nouns and most common
word endings are known (e.g., words with the suffix -ous tend to be adjectives). Afterwards,
tag assignments are iteratively changed according to the learned rules. An evaluation using
the Brown corpus showed that the error rate drops to 3,5%.

Some extensions of the Brill tagger are described in [36]. They comprise tagging using
lexical relationships, a new method to identify unknown words, and multiple tags for each
word. Initial tagging knowledge is reduced to a minimal amount. The unsupervised learning
algorithm is explained in detail in [38]. A good summary of Brill’s work is found in [37].

68 4 Natural Language Text Representation

Cuttings Hidden Markov Model Tagger

Cutting et al. [59] present a part-of-speech tagger that is robust, efficient, accurate, tunable,
and reusable. The tagger is based on a hidden markov model to resolve a small set of
ambiguity classes. A lexicon module provides information about common word tags, word
suffix identification, and default ambiguity classes. Their experiments show that the tagger
achieves an accuracy of over 96%.

TreeTagger

Schmid [221] presents a probabilistic part-of-speech tagger called TreeTagger. The tagger
operates on second order markov models using binary decision trees to estimate n-gram
probabilities instead of a maximum likelihood estimation (see Figure 4.2). Tree pruning is
used to recursively remove leaf nodes below a weighed information gain. Initially, tags are

tag-1 = ADJ ?

tag-1 = NN ? tag-2 = DET ?

no yes

tag-2 = ADJ ?

no yes

NN: 70%
ADJ: 10%

.

.

.

Figure 4.2: A sample decision tree [221]

assigned through a lexicon that includes full forms, suffixes, and default category entries.
Afterwards, unigrams, bigrams, trigrams, and quatrograms are applied to assign correct
tags. Evaluation results using the Penn Treebank corpus show good results of up to 96,34%
accuracy.

Further developments of the TreeTagger are described in [222]. In order to fit the domain
of German texts some additional processing steps are included: Smoothing to circumvent the
sparse data problem is done with equivalence classes, a prefix lexicon is used in combination
with suffixes, and capitalized sentence initial words are considered. In an evaluation using
the large newspaper corpus Stuttgarter Zeitung the tagger achieves up to 97,53% accuracy.

4

4.2 Related Work 69

QTag

Tufis and Mason [242] propose QTAG, a probabilistic part-of-speech tagger. Tiered tagging,
as they call it, allows the usage of large tagsets that go beyond the computational power of
average computer systems. This is accomplished by using a hidden tagset of smaller size
that is post-processed (i.e., hidden tags are resolved by the original ones) during a later
phase. Dictionary lookup is applied for initial tagging. Unidentified tags are analyzed by two
morphological guessers, one applying suffix matching and another one which is linguistically
motivated. An evaluation of the Romanian CTAG corpus results in over 97% accuracy.

The TnT Tagger

In 2000 Brants [31] introduces the statistical Trigrams’n’Tags (TnT) tagger. The TnT tagger is
based on markov models, where the first step is processing maximum likelihood probabilities
for unigrams, bigrams, trigrams, and lexical units. Smoothing, the linear interpolation of
unigram, bigram, and trigram probabilities resolves the sparse data problem by avoiding zero
probabilities. Unknown words are identified through suffix identification and capitalization
clues. Experiments using the NEGRA and the Penn Treebank corpora showed that the TnT
tagger outperforms other approaches reaching an accuracy of over 99%.

The Stanford Tagger

At Stanford University Toutanova and Manning [239] developed a maximum entropy tagger.
According to its context, each word is assigned all possible tags through probabilities. The
probability of a tag sequence is computed as the product of the conditional probability of each
of the tags, resulting in a probability distribution. Out of this set of all feasible assignment
sequences, the probability distribution that has the highest information gain (entropy) is
selected. With special attention put on the correct identification of unknown words, the tagger
achieves an overall accuracy of 96,86%.

4.2.4 Stopword Filtering

Fox [76] describes a method to systematically extract a list of stopwords from a document
collection. In his work he relies on the Brown corpus that consists of over a million words
from common English literature. Based on their frequencies terms occurring at least 300 times
are extracted, resulting in an initial list of 278 terms. In a first step 32 non-stopwords are
manually removed. 26 additional terms of lower frequency are manually added in a second
step. Finally, the list is further extended by words that are considered as stopwords and
which can be recognized with the same finite state machine (almost) for free. Therefore, he
defines nine different adding criteria like words with different prefixes ended by -body (e.g.,

70 4 Natural Language Text Representation

anybody, nobody), -ly (e.g., clearly, fairly), or -self (e.g., itself, herself). He ends up
with a list of 421 stopwords for common English texts that “can serve as the basis for stop
lists for specialized data bases” [76].

4.2.5 Stemming Systems

The Lovin Stemmer

Initial research in the area of word stemming is conducted by Lovins [165] in 1968. The
proposed stemming algorithm is context sensitive, that is suffixes are only stripped if certain
qualifications are fulfilled (e.g., minimum length of a remaining stem is two letters). Longest-
match suffixes are removed first, implying an order among the set of reduction rules. The
stemmer includes a list of 294 possible suffixes, a large list of exceptions, and a set of context
sensitive rules (constraints) to avoid a wrong reduction of terms. The algorithm finalizes by
applying rules for recoding incorrectly stemmed words (e.g., -ll→ -l, -iev→ -ief).

The Dawson stemmer

Compared to Lovins, the Dawson stemmer [62] uses a much larger list of about 1200 suffixes.
These are implemented as character trees to ensure fast computation. In contrast to Lovins’
stemmer no final recoding takes place. A partial matching routine ensures that nearly identical
stems are reduced to a single one. This is done by sets of endings that, if removed, result
in the same stem. For instance, the set {mit, miss} summarizes the terms admit and admiss,
where the shortest remaining stem admit is selected to serve as the single stem for all of the
terms.

The Porter Stemmer

One of the best known stemmer is proposed by Porter [203]. The rules for stripping suffixes
are organized in five distinct phases. Each of the phases succeeds the previous one, starting
with phase 1 and ending with phase 5. Equations 4.1–4.6 depict some examples according to
these phases. Phase 1 (Equation 4.1) reduces plurals and past participles. Subsequent phases
further reduce the intermediate stems: phase 2 (Equation 4.2), phase 3 (Equation 4.3), and
phase 4 (Equation 4.4). Finally, phase 5 tidies up some remaining suffixes (Equations 4.5 and
4.6).

4

4.2 Related Work 71

generalizations → generalization (4.1)

generalization → generalize (4.2)

generalize → general (4.3)

general → gener (4.4)

controll → control (4.5)

probate → probat (4.6)

In his experiments Porter shows that stemming applied for information retrieval reduces the
size of the vocabulary by about one third.

The Paice/Husk Stemmer

The Paice/Husk stemmer [193] described by Paice is an iteratively operating rule-based
stemmer. Each rule either deletes or substitutes word endings, making recoding rules
obsolete. The rules are grouped according to the ending letters of the suffix, where their
order within the groups is of importance. Some of the rules are dedicated only to words
where no changes have yet been made. The rule format consists of five parts: an ending in
reverse order, an optional intact flag, a zero elimination flag, an optional append string, and a
continuation symbol defining the termination of the stemming procedure. Stemming is done
by first selecting the corresponding group and applying the ordered rules until (1) a rule
terminates the stemming, (2) no more rules are applicable, or (3) the group letter changes.

In his subsequent work Paice [194] presents a way to evaluate different stemmers. In an
experiment he compares the performance of three different stemmers proposed by Lovin,
Porter, and himself, using a self-generated test set of about 10000 words from the CISI
document collection. The findings are that both, the Lovin’ and the Porter stemmer tend to
reduce words referring to the same concept to different stems. In contrast, the Paice/Husk
stemmer tends to reduce words referring to different concepts to a single stem. However,
without an explicit definition of an application domain neither of the stemmers clearly
outperforms the others.

Krovetz’ Extension of the Porter Stemmer

Krovetz [158] experiments with an altered version of the Porter stemmer. One of the major
problems of Porter’s work is that words with different meanings often are reduced to the
same stem. To avoid this, Krovetz includes dictionary lookup that precedes each of the five
phases in Porters stemming algorithm. If a match occurs, the stem included in the dictionary
is taken instead of applying any rules, and the stemming procedure is instantly terminated.
However, results only show slight benefits compared to the original version.

72 4 Natural Language Text Representation

Thus, Krovetz proposes two other stemming approaches. First, an inflectional stemmer
that only converts plurals to singular form, changes past tense to present tense, and eliminates
-ing endings was developed. Each of the three tasks is preceded by a dictionary lookup.
Second, a derivational stemmer was implemented that extends the inflectional stemmer by
the fifteenth most frequent endings. In their experiments using four different document
collections he shows that the derivational stemmer slightly outperforms the others (including
the Porter stemmer).

The Croft Stemmer

Croft and Xu [58] present a corpus-specific stemming strategy. They apply an aggressive
stemmer (Porter stemmer) that extensively reduces terms even with different meanings to the
same stem. In their experiments the West collection and the Wall Street Journal collection are
used. Based on the stems and a window size of 100 words, equivalence classes are formed
for each stem using the unionfind algorithm (i.e., < word, stem > pairs). Each word pair (i.e.,
< word, word >) within each equivalence class is evaluated according to Equation 4.7.

em(a, b) =
nab

na + nb
(4.7)

where na (resp. nb) is the number of occurrences of term a (resp. term b) and nab denotes the
number of occurrences of the terms a and b together in the same window. According to a
em(a, b) threshold new equivalence classes are formed, where the final ‘stem’ is defined by
the shortest word in each equivalence class. The new corpus-specific < term, stem > pairs
are stored in a lookup table. Their results show a clear improvement of information retrieval
applying the proposed stemming algorithm, even outperforming the results achieved by
applying the Porter stemmer directly.

4.3 Natural Language Oddities

A properly working language processing system has to be aware of the different kinds of
delimiters, printable characters, and special characters. Clearly, the depth of analysis has a
strong impact on the system’s performance regarding both, quality and time. An important
point is an unambiguous terminology and support during all levels of language analysis.
Last but not least domain specific knowledge plays a central role and has to be considered
properly in advance. This implies a proper definition of allowed characters within processing
strings. For instance, are units containing characters like -, @, :, %, $, . defined as correct
words or not? The decision strongly relies on language, domain, and external knowledge
which has to be provided to the language analyzer in some way.

4

4.3 Natural Language Oddities 73

Different character sets and the treatment of special characters always posed difficulties.
Moreover, the discussion about upper- and lowercase letters has still not come to a conclusion.
Most information retrieval systems based on keyword search are converting characters into
lowercase. From the retrieval point of view this does not effect retrieval performance a lot [21].
Anyway, capital letters also have their own semantics which may be used to begin sentences,
identify proper nouns, name institutions, or mark other kinds of tokens such as operation
system specific commands. Obviously, a distinction between Richard Brown and brown ink

may be of interest. In general there is no easy solution for the problem of accurate proper
name detection [173, pp. 124].

One of the major difficulties in natural language processing pose the diverse possibilities
to separate words and sentences. It includes common delimiters like blanks, tabulators, line
feeds, and carriage returns. In addition to that, special characters may also be used to end up
or recombine tokens, including apostrophes, hyphens, slashes, and punctuation marks. This
section outlines example usages of these delimiters and points out possible treatments.

4.3.1 Difficulties Concerning Sentence Delimiters

Jackson and Moulinier pointed out that “Detecting sentence boundaries accurately is not
an easy task” [141, pp. 9]. Usually we have no problem to detect the end of sentences
with default markings like the period (.), question mark (?), and exclamation mark (!).
Other candidates for sentence termination markings are the colon (:) and the semicolon
(;). Especially in the context of irregular usage of those markers difficulties may arise (see
Table 4.1). Without considering the actual context, an interpretation of punctuation marks at
sentence borders may often be ambiguous. This diversity of marker usage gives a first insight

Table 4.1: Examples of (irregular) usage of sentence delimiters
Category Example
sentence end This is the end...
sentence ending number 3 plus 4 is 7. It ended 1977.
sentence ending abbreviation Including mice, rats, etc.
punctuation marks in text In Java !yellow means not(yellow).
cumulative punctuation marks Is that true?! Not this way!!!
citation gap states that “one theory ... saves the world”

colon and semi colon
Some animals: cats and dogs.
Some cars: the BMW; the Ford; and the Audi;

into the complexity of natural language text processing. Each of the markers pose specific
(language-dependent) peculiarities in the domain of text segmentation handling. In order
to master the problem of sentence border disambiguation, a rule-based and linguistically
motivated (language-dependent) multi-level approach is proposed. As a consequence fixed

74 4 Natural Language Text Representation

and static identification strategies often turn out to be not appropriate, suffering in (language
(in-)dependent) tokenization.

Being the first step of natural language analysis, common tokenization strategies assume
that the function of the period is easily identifiable. However, it takes over many different
functions. One of its default functions is to decode sentence endings as the last character of a
sentence ending word. But even this task of sentence detection based on border identification
still seems not completely solved.

Usually the period is defined as the classical sentence delimiter in European languages. But
on a closer look it delimits sentences (per definition it “draws the boundaries of something”)
only in combination with a blank. In the domain of pattern conceptualization it does not
function in the same manner. Very often the period may also be used to format numbers,
fix dates and times, compose complex formats (e.g., credit card numbers, postal codes),
enumerate items (the 4.rank), identify variable names (object.id), abbreviate full words
and phrases, and mark citation gaps (see Table 4.1).

The period itself does not uniquely function as a delimiter of sentences. Without a
following blank (i.e., inside abbreviations or digits) it has a certain decomposing functionality
to support the segmentation of concepts. In patterns like 12.35 and 3.567.123 it helps
to distinguish between higher and lower measurement units. In abbreviation patterns
like e.g. the (first) period helps to identify the related full words. Periods within URL
addresses like www.google.com also decompose different (semantic) concepts on a syntactical
level. Motivated by Guo [116, 117] and Mikheev [180] the document itself can be used to
disambiguate part of such tokens. In contrast, a period followed by a blank terminates the
conceptualization process of a semantic unit, which might be the realization of an abbreviation
or the end of the whole sentence. In the pattern e.g. the second period has two functions:
It decomposes one word of an abbreviation and it terminates the conceptualization of the
whole abbreviated phrase exempli gratia because of the following blank.

Difficulties arise if abbreviations and regular words are overlapping, like Wash. (Washing-
ton) and wash. As a consequence dictionary lookup of the word wash (after punctuation mark
splitting and case insensitivity) to identify non-abbreviations fails. Additionally, abbreviations
may simultaneously denote sentence ends (like etc.).

Treating these abbreviations the same way as within sentences results in missing sentence
ending periods. Thus, sentence borders are not correctly detected which may lead to problems
is later processing steps (e.g., sentence-based tagging). In German, for example, one can
define the period as a sentence end if the following conditions are met:

1. The sentence-ending token contains the period as its last character.
2. The sentence-ending token without the period is at least two characters long (no German

word consists of a single character).
3. The sentence-ending token without the period must not be a number.

4

4.3 Natural Language Oddities 75

4. The sentence-ending token is the last token of the text, or the token which follows is a
number or a string starting with a capital letter.

From this definition it is clear that finding sentence borders requires much knowledge
about a language. To sum up, the period has the following coding functions:

� It decodes the termination of a sentence and functions as a delimiter between sentences
together with spacings (blank, tabulator) and new lines (carriage return, line feed).

� In the domain of word dependent conceptualization it decodes the termination of
semantic word concepts.

� It decodes the reduction of full words and phrases for the purpose of abbreviation.
� In the domain of formatting, it separates units for a better readability. After a number it

implies an instantiation of an arithmetic concept.

4.3.2 Abbreviation and Acronym Detection

Abbreviations mainly consist of letters separated by periods where each period terminates a
conceptualization. In contrast, acronyms consist of an arbitrary number of letters without
any separation. They define a compound of related concepts that are reduced for the sake of
easier comprehension by hiding the internal syntactic structure.

Using list comparison, there may always be the problem of huge amounts of listed items
which are in most cases still incomplete. Abbreviations may be written with or without
periods, making it even harder to detect sentence borders properly. They occur within titles,
month names, jobs, institutions, country codes, and common words (see Table 4.2). Also, the
list of used acronyms (often used in emails or online chats) is growing fast, and keeping track
of all of them is quite impossible.

Table 4.2: Examples of abbreviations and acronyms
Category Example
titles Dr., Prof., Dipl.-Ing., NN., John Doe, Jr.*

month names Jan., Sept., Dec.
jobs Off., Lt., Capt.
institutions CIA, UNO, Microtest Inc.
countries and locations AUT, CH, SLO, U.S., St. Germain
names M. Hassler, Ali G.
measures and metrics yd., yrs., m.p.h., sec., lbs., kg, l, db, AE
common Mr., etc., aka., i.e., versch., fig., Dept.
acronyms AEG, IBM, ISYS, GIS
texting abbreviations LOL, MfG, CU, ACK
* MUC6 example: Guidlines that pertain only to person Guidelines (http://www.cs.nyu.edu/cs/faculty/
grishman/NEtask20.book_9.html, 08.09.2006)

A promising approach that may work is to use a dictionary containing common abbrevia-
tions combined with a list of domain specific abbreviations. Further, language and application

http://www.cs.nyu.edu/cs/faculty/grishman/NEtask20.book_9.html
http://www.cs.nyu.edu/cs/faculty/grishman/NEtask20.book_9.html

76 4 Natural Language Text Representation

dependent rules identifying special formats likely to match abbreviations can be used to
improve the results. In combination with a full form lexicon the number of misinterpreted
sentence endings can be additionally reduced.

4.3.3 Numbers

Generally numbers are not good index terms because of their vagueness and ambiguity [21].
But they can also be clearly of importance and should be at least recognized during text
processing. Numbers may be used within written texts with punctuation marks like periods
for large numbers or the commas for decimal numbers. In addition their formatting is
language dependent, as the number 123,456.78 in English texts becomes 123 456,78 in
French texts. The slash (e.g., 1/2) is used to express fractions of numbers. Sometimes blanks
are used for formatting, depending on the language and individual styles of an author.
Numbers are used in postal codes, date and time formats, enumerations, abbreviations
of their full forms, currencies, temperatures, metric measurements, or simply as counter.
Table 4.3 gives some examples of number usages in texts. These patterns can be treated by

Table 4.3: Examples of number occurrences in texts
Category Example
starting words 3rd, 5th, 14tägig, 100fach
within words F-117A bomber, H2O
ending words vitamin B12, ISBN:123-1433-234
with special characters 20% VAT, volume #4
composite nouns 20-dollar bills
names OS/2, PS/2
numbers and fractions 12.345,60, 5 1/4 points, 1.5 times faster
times 1:30p.m., on 14.may, 510B.C.
dates 2005/June, 01-05-2005, 1875/12/1, 01.01.99, April 05
periods 1970-80, summer term 2004/05
currencies $100,000, US$42,1 millions,
measures and metrics 12kg, 127lbs, 4sec,

rules defining the format (covered in the next subsections). An advanced lexical analysis
procedure might also perform date and number normalizations to uniform formats [21, pp.
166].

4.3.4 Special Formats

Special formats like sixteen digits in a row separated by blanks or hyphens may identify credit
card numbers. Such patterns can be covered by special rules. For example, phone numbers
are written in quite heterogenous forms as shown in Table 4.4. They may contain spaces,
periods, hyphens, brackets, and slashes to group digits in various forms [173, pp. 130].

4

4.3 Natural Language Oddities 77

Table 4.4: Examples of phone number formats
Phone numbers

(43463)12345 0043-463-12345 +43 463 12345a

+43(0)463 12345a +43/463 12345a ++43-463-12345
43-463-12345 +43/(0)463/12345 0463 2700 3531a

(44.171) 830 1007a (202) 522-2230a 1-925-225-3000
212.995.5402a +411/284 3797a +49 69 136-2 98 05a

a these format cannot be identified on single-token level

Other formats like email addresses containing the @ character, web addresses tending to
start with www, or URL definitions including a protocol as ftp:// have to be considered in
texts as well (see Table 4.5).

Table 4.5: Examples of special formats
Special token formats

john@smith.com http://www.fbi.org
Object::Name x.id
ID:F175-23-ak c:\photo\123.jpg
IP:192.168.1.51 /home/marcus/repository.txt

4.3.5 Apostrophes

Apostrophes pose a set of difficulties in finding token borders and their treatment during
tokenization. They are not only used for enclosing direct speech, but also for encoding
contractions and concatenations (through elision), clitics, or indication of a plurals possessive
(see Table 4.6) [173, pp. 126].

Table 4.6: Examples of apostrophe usage
Category Example

direct speech
He said: ’It is really difficult!’
He says: "Give me that coke, Mr. Smith."
’What do you mean?’

elision you’re, it’s, won’t, l’addition, c’est la vie, presqu’le
clitics the man’s car, the cat’s food
plurals possessive the boys’ hats, the cats’ food
quoted proper nouns ’Water Rats’, ’The Round Table’
within names O’Reilley, c’t magazine, McDonald’s, Alzheimer’sa

a MUC6 example: Miscellaneous types of proper names from MUC6 Guidelines (http://www.cs.nyu.edu/cs/
faculty/grishman/NEtask20.book_9.html, 08.09.2006)

Apostrophe treatment can be seen as a two level process. It presupposes simple tokeniza-
tion including separation of token candidates (not including a delimiting character) and basic
punctuation mark separation in a first place. Afterwards, linguistically motivated apostrophe

http://www.cs.nyu.edu/cs/faculty/grishman/NEtask20.book_9.html
http://www.cs.nyu.edu/cs/faculty/grishman/NEtask20.book_9.html

78 4 Natural Language Text Representation

treatment follows. The central issue is whether strings containing apostrophes should be sep-
arated or not. This issue cannot be resolved without incorporating general decision guidance.
In a first rough approximation the following basic guidelines for apostrophe treatment are
proposed:

� Apostrophes at the start and end of tokens (strings without delimiting characters) are
considered as quotes and separated.

� Apostrophes occurring within tokens are candidates for further linguistically motivated
splitting.

� Apostrophes that cannot be treated in both ways (e.g., no splitting is possible) are
specifically marked and left for further treatment.

There are several ways to decompose aggregated elision patterns like isn’t in which the
isn is the result of a phonological motivated contraction process. It is an open issue whether
those tokens should be (1) treated as a single token in form of isn’t, (2) split up into two
tokens isn and t, or (3) substituted by their full forms is and not.

The first strategy (1), which is not favored, does not treat apostrophes at all. The processing
is left open to the next analysis step. The second strategy (2) treats the apostrophe as a
separator and decomposes the involved elements without any linguistic interpretation. The
third strategy (3), which is based on (language-dependent) logical and semantical analysis
(decomposition rules), is preferred for the purpose of this work. It combines the first
separation step with a second substitution step via morphosyntactically motivated linguistic
rules. For instance, n’t is interpreted as the negation operator not and thus gets isolated and
substituted by its full form. In the case of isn’t, this results in two separate words is and
not. One has to note that there are also exceptions to this processing in English, as the tokens
won’t and can’t cannot be treated in this manner.

To achieve optimal results the treatment of strings containing apostrophe has to be done
on two levels. First it has to be compared to a (countable) list of exceptions (like won’t) with
their full strings (like will not). Matching strings are substituted by their listed full forms. If
no match occurs general strategies are applied (like strings ending with n’t are split up into
the string before the n’t and the substitution not).

The complexity of the problem confirms the hypothesis that proper apostrophe treatment
has to consider the linguistic context. Token isolation in this sense minimizes the error-
proneness of subsequent disambiguation processes operating on the remaining apostrophe
containing strings.

4.3.6 Hyphenations

Hyphenation is another relevant issue in the context of multi-level tokenization [107]. Manning
and Schütze distinguish three different types of hyphenation [173, pp. 127]:

4

4.3 Natural Language Oddities 79

1. Hyphenation is used for text justification, where words at line breaks are split up for the
sake of alignment. Finding such hyphens as the last character of a word at the end of a
line, getting rid of the hyphen, and reconcatenating it with the first word of the next
line is an easy task. But it leads to haplology in the ambiguous case of words containing
natural hyphens. In electronic texts such hyphens are usually not present.

2. Some words contain natural hyphens that are part of the word itself. This includes
lexical hyphens inserted before or after small word formatives (e.g., re-concatenate).

3. Hyphens are used to indicate the correct grouping of words (e.g., state-of-the-art).
Those tokens may be split up into their components to allow a syntactic analysis [21].
Because they are very common in many corpora, the size of vocabulary increases
considerably if they are not split up (e.g., information-based).

Hyphens can also be used as an autonomous dash to separate semantic units of a sentence,
for listing items, as a minus sign (in formulas), for the sake of abbreviation, and much more
(see Table 4.7).

Table 4.7: Examples of hyphenation usage
Category Example
(a) line breaks at-tach, unpro-nounced, analo-gy
(b) single words e-mail, co-author, A-1-plus, so-called, pro-Arab, B-52

(c) grouping of words
aluminium-export, text-based, 15-year-old,
ring-around-the-rose, science-fiction, U.S.-Japan trade

(d) dashes It works - as I supposed - fine.

(e) itemizations
- easy
- medium
- hard

(f) minus sign average of -25 degrees centigrade, obviously 3-2=1 is true
(g) abbreviations the pre- and postconditions are
(h) names Jean-Claude van Dame, F. Gregory Fitz-Gerald

A particular problem in this area is the inconsistent use of hyphens [173, pp. 128].
There exist many examples of different forms and writing styles of the same terms like
co-operate/cooperate, data-base/database, or hyper-text/hypertext. A careful editor
surely would filter out this inconsistencies, but in practice most of the texts will contain
such forms. To cope with these difficulties, the approach in this work treats hyphenation on
different levels of tokenization:

� On the first level (simple tokenization) hyphens decoding token- and line-endings are
marked as potential candidates for reconcatenation on the second level of tokenization.
Hyphens surrounded by blanks (examples (d) and (e) in Table 4.7) are also marked and

80 4 Natural Language Text Representation

treated as separate tokens on the first level. All other hyphens within strings are treated
as valid characters and are not processed any further.

� On the second level tokens marked for reconcatenation are substituted by their con-
catenated form. For instance, the term hyphenation may be hyphenated as the three
token sequence hyphen- + EndOfLine + tion. Therefore, list comparisons (e.g., last
token is not a valid term, concatenated string is a valid term) and rule-based strategies
(e.g., [term]- + [EndOfLine] + ness → [term]ness) are applied. Tokens marked as
autonomous hyphens are further interpreted as sentence markers ((d) in Table 4.7),
implicit logical items ((e) in Table 4.7), or part of formulas ((f) in Table 4.7).

4.3.7 Slashes and Other Special Characters

In addition to apostrophes and hyphens, slashes, backslashes, and other special characters are
frequently used within texts. Like before, these patterns may also be candidates for splitting –
with the same drawbacks of misinterpretation. Some examples are depicted in Table 4.8.

Table 4.8: Examples of other special characters in tokens
Category Example
names OS/2, PS/3000, Micro$oft, AT&T, Horvarth&Sons
abbreviations w/o
alternatives this element/container, the pre/postcondition

The next section introduces Extended Tokenization, a rule-based approach that tackles
these natural language oddities.

4.4 Extended Tokenization

Researchers from the text mining, information retrieval, and computational linguistics do-
mains agree that tokenization is the first step of any kind of natural language text process-
ing [255, 75, 107, 116, 117, 24]. Good surveys about tokenization techniques are provided
by Frakes, and Baeza-Yates [77], Baeza-Yates and Ribeiro-Neto [21, pp. 165–167], and Man-
ning and Schütze [173, pp. 124–136]. But only very few reflect tokenization as a task of
multi-language text processing with far-reaching impact [98, 260]. This involves language-
related knowledge about linguistically motivated and domain specific patterns on many levels
of linguistic analysis (i.e., sentence border disambiguation, composite noun identification,
abbreviation handling) [141, 217, 216].

The major goal of this early (pre-linguistic) task is to convert a stream of characters into a
stream of processing units called tokens. Beyond the computational linguistics community
this job is taken for granted. Commonly it is seen as an already solved problem comprising

4

4.4 Extended Tokenization 81

the identification of word borders and punctuation marks separated by spaces and line
breaks. Many textbooks even dispatch tokenization as relatively uninteresting, but in reality
“tokenization is a non-trivial problem” [107]. From the linguistic point of view it should
manage language related word dependencies, incorporate domain specific knowledge, and
handle morphosyntactically relevant linguistic phenomena.

At one stage of linguistic analysis, elements of a text have to be assigned to certain syntactic
classes. In order to find those elements (strings) the text (one long string) has to be divided
into logical units (tokens) that can be assigned to those classes. A key issue of tokenization is
recognizing sentence boundaries since most grammars consider them as semantic and logic
units of treatment [107]. Especially if using online material such as newsgroups and web
pages for data “. . . one finds all sorts of oddities like C|net . . . ” [173, pp. 125]. Furthermore,
characters like numbers, hyphens, punctuation marks or upper- and lowercase letters make
up a considerable part of a text and have to be taken into account. In [141, pp. 10] the authors
outline that a simple approach is insufficient.

The main assumption is that text – the content of fragments – which is processed by the
system has already been pre-filtered, e.g., whitespaces are collapsed and tags for structural
or layout relevant markup (e.g., <link>-tags, <emph>-tags) are removed. Furthermore it is
presupposed that contents in form of headers, separators, tables, figures, typesetting codes,
and other isolated objects are not included in the analysis [173, pp. 123].

After this preprocessing of raw textual content, tokenization is the first step dealing with
pure natural language texts. It separates tokens and sentences, identifies proper nouns and
special formats, handles abbreviations, and performs basic (non-linguistic) text transforma-
tions (thesaurus like substitutions or format normalizations). All subsequent steps during
natural language analysis are based on the result of the tokenizer. This means that early
errors occurring during tokenizing lead to very poor overall performance. It is important to
be conscious that the theory and methods applied here have a great impact and have to be
considered carefully [21, pp. 167].

Therefore, rule-based Extended Tokenization [122] is proposed that includes all sorts
of linguistic knowledge (e.g., language, grammar rules, dictionaries), domain knowledge,
gazetteer knowledge, and expert knowledge. Extended Tokenization in this sense does not
only separate strings into basic processing units, but also interprets and groups isolated
tokens to create higher level tokens. This is done by exploiting so-called token types assigned
through an elaborated machinery of heuristic and linguistically motivated rules, and – if
available – minimized dictionary knowledge.

Figure 4.3 shows where Extended Tokenization is located within the text preparation
and processing framework. First, raw texts are preprocessed and segmented into textual
units. This step comprises cleansing and filtering (e.g., whitespace collapsing, stripping
extraneous control characters) [196] and removal of all kinds of structural or layout relevant

82 4 Natural Language Text Representation

markup. Then, Extended Tokenization segments the plain text into appropriate processing
units. Tokenization does not include any kind of linguistic analysis like morphological word
analysis or syntactic sentence analysis. These tasks are left open to be accomplished on higher
levels during natural language analysis. Subsequent tasks like tagging are applied on the
tokenized output and thus should be supported as far as possible (e.g., format normalization,
consistent terminology).

Cleansing
Filtering

Extended
Tokenization

Further NLP
(tagging etc.)

Figure 4.3: The task of text preparation and processing

The implementation prototype, JavaTok (see Section 4.4.3), provides a language inde-
pendent core tokenizer that is easily adaptable for language specific needs by means of
incremental rule set expansion. It operates on plain natural language texts, relying on the
language-independent UTF-16 [244] character set. JavaTok supports rule-based typing of
tokens using regular expression matching and methods for context dependent constraint
checking. The core features of the implemented system are identification and disambiguation
of all kinds of linguistic markers, detection and expansion of abbreviations, treatment of
special writing formats, and typing of tokens including single-tokens and multi-tokens.

To improve the quality of textual representations, linguistically-based tokenization is a
necessary step that precedes further text analysis. The complexity of subsequent processing
tasks (e.g., tagging, stemming, named entity recognition, chunking, parsing, etc.) is reduced
dramatically by decisions made early in the above mentioned string-interpretation domains.
By mapping token types onto part-of-speech tags, the tagging process is speeded up. There
is no need to identify string patterns again, because the tokenizer provides tagger relevant
clues. Beyond that, the tagging results are improved because the tokenizer generates better
interpretable input units (multi-tokens). This section focuses on improving the quality
of standard tagging through Extended Tokenization. Thus, the overall quality of textual
representation throughout all levels of analysis is enhanced.

The early identification of tokens partially covers the well known ‘named entity recognition’
task based on an empirically motivated categorization of proper names as defined by MUC-
6 [182] and MUC-7 [183]. The Text Encoding Initiative (TEI) Guidelines [235, 234] for Electronic
Text Encoding and Interchange cover such identifiers (plus abbreviations) and explain that they
comprise “textual features which it is often convenient to distinguish from their surrounding
text. Names, dates and numbers are likely to be of particular importance to the scholar
treating a text as source for a database; distinguishing such items from the surrounding text
is however equally important to the scholar primarily interested in lexis.” [235, Section 6.4]

4

4.4 Extended Tokenization 83

The next section provides the definitions of two token concepts. Section 4.4.2 introduces
the notion of token types to support token generalizations and high level concept formulation.
The procedure of assigning token types to tokens is described as a rule-based approach. The
architecture and functionality of the implementation (JavaTok) is presented in Section 4.4.3.
Finally, some features of JavaTok with respect to the theoretical considerations are outlined.

4.4.1 Definitions of Token Concepts

In this work two different kinds of tokens, namely single-tokens and multi-tokens are
distinguished.

Single-Tokens

The simplest form of a token is the single-token. It is defined as a character string not
containing any non-printable or delimiting characters (blank, tabulator, line feed, new line,
etc.). It corresponds to the traditional concept of a token. Examples of single-tokens are words,
numbers, internet addresses, and most abbreviations. See Guo [116, 117] and Mikheev [180]
for more examples.

Multi-Tokens

Written texts also contain more complex language constructs that do not fit into the single-
token concept. Such tokens may be specially formatted using blanks (the standard delimiter
for token boundaries) that belong to semantically motivated groups of tokens. The blank is
an inherent part of the token chain fixed together through interpretation (see Table 4.9).

Table 4.9: Examples of multi-tokens
Category Example
Composite nouns traffic jam, rush hour, Christmas tree
Full names Albert Einstein, George William Bush
Institutions University of Klagenfurt, Red Cross
Locations Niagara Falls, New York, Suncoast Seabird Sanctuary
Special formats +43 463 12345-67, ISBN 202-546-234-0

Tokens that contain token delimiters for formatting (e.g., blanks, tabs, new lines, line
feeds) are defined as multi-tokens. Well known representatives are composite nouns (summer
time), special formats (+43 463 2700-3531), named entities (names, locations, institutions),
and idioms (formulas). Traditionally they have been identified as a sequence of atomic tokens
glued together during a later processing phase - mainly using dictionary lookup. In this
approach these tokens are multi-tokens through heuristic interpretation or, in other words,
they are tokens through rule-based typing.

84 4 Natural Language Text Representation

The early treatment of multi-tokens as (semantic) concepts during text processing improves
the overall quality of information retrieval and document mining tasks. The representation
of a text using multi-tokens leads to better intermediate results, hence structurally and
(semantically) grouped tokens are treated as atomic units. If subsequent tasks do not support
multi-tokens, a simple reinterpretation into standard single-tokens is on hand.

Many of the cases mentioned in Table 4.9 can be handled either by list lookup (compared
to predefined strings) or by matching against regular expressions (like phone numbers).
Extremely difficult to deal with are patterns including hyphenation like in New York-New

Haven railroad [173, pp. 130]. Here, in order to avoid a misinterpretation of York-New as a
separate hyphen-containing token, the recognition of named entities has to precede rule-based
resolving of hyphens.

4.4.2 The Procedure of Token Typing

Rule-based typing of tokens has not been introduced in the literature so far. In this work
typing of tokens is defined as a pre-linguistic classification process that assigns type identifiers
to both, single-tokens and multi-tokens. Hence this proposal is user centered, the user himself
is allowed to define his own token types for appropriate needs, where token types are simply
expressed through strings. In a complex natural language processing framework token typing
supports central linguistic tasks like simple part-of-speech tagging and/or basic semantic
tagging. This approach partially covers named entity recognition, the classification of proper
names into categories [180]. This processing step is integrated in the Extended Tokenization
task because the identification of multi-tokens comprises more than just named entities.

The proposed framework for tokenization allows the definition of multi-tokens by in-
cluding delimiters (like blanks) within the token recognition part. This is necessary for each
variant of multi-level tokenization. The definition of token types relies on the available sources
of knowledge and strongly depends on the motivation and application of token interpretation.
There are

� domain knowledge: i.e., structure of an organization, knowledge about data warehouses;
� gazetteer knowledge: i.e., country names, river names;
� expert knowledge: i.e., medicine, astronomy;
� pure linguistic knowledge: i.e., morphological and syntactical rules, subject of a sentence.

The goal is to prohibit misleading separation during tokenization, providing an optimized
input for further linguistic processing. It includes rule-based pattern recognition of single-
and multi-tokens, grouping of tokens, and token splitting. Subtasks can be formulated as
follows:

� string replacements (substitutions of single- and multi-tokens)
� abbreviation and acronym handling (recognition and substitution)

4

4.4 Extended Tokenization 85

� identification of proper nouns and names (part of named entity recognition)
� application of rules on single- and multi-token level (for recognition, substitution,

grouping, and splitting)
A minimal set of internal token types is used to mark end of sentences Teos, punctuation

marks Tpm, delimiters Td, and unknown tokens Tu (darker boxes in Figure 4.4). Additional
single-token types occurring in lookup lists or rule bases are dynamically incorporated
and applied during the tokenization process (lighter boxes in Figure 4.4). In the figure,
the numbers in parentheses count the rules that are defined for this token type (described
in Chapter 5). In addition, higher level types for multi-tokens can be defined, referring

Basic Token Types
(4+72)

ALPHA
(49)

NUMERIC
(20)

ENTITY
(3)

COMMON
(26)

ACRONYM
(15)

SPECIAL
(8)

PLAIN
(6)

FORMAT
(13)

SPECIAL
(1)

WWW
(3)

INTERNAL
(4)

Punctuation Mark

End of Sentence

Delimiter

Unknown

Figure 4.4: Basic token types

to predefined sequences of tokens. Using the same terminology through different natural
language steps (e.g., equally named token types and part-of-speech tags), tokenization directly
supports subsequent processing tasks. Otherwise, a reinterpretation or mapping step between
token types and tags is needed, allowing to generalize classes of token types to a certain
part-of-speech tag.

The typing process (see Algorithm 4.1) comprises two phases: The first phase (1-3) identifies
token and sentence borders. It results in a sequence of single-tokens associated with basic
token types. In a second phase (4-6) contextually motivated reinterpretation (retyping) of tokens
is carried out. Therefore, rules for changing token types, rules for merging multiple single-
tokens into a single multi-token, and rules for splitting a single multi-token into multiple
single-tokens are applied recursively. The aim of the second phase is to improve the accuracy
of the tokenization results achieved in the first phase.

The tokenization algorithm (Algorithm 4.1) starts with basic text segmentation, separating
strings into single-tokens (step 1) using standard delimiters (blanks, tabs, new lines, line
feeds). Initially, each token is assigned the unknown token type Tu. In step 2, rules assign
basic token types (see Figure 4.4) to single-tokens, utilizing a classification of tokens in distinct

86 4 Natural Language Text Representation

Algorithm 4.1 Typing of tokens

1: identify single-tokens
2: type single-tokens according to the basic token types
3: split sentence end markers

4: reinterpret single-token types
5: merge and split tokens recursively
6: reinterpret all token types

categories. This step includes assignments of the Internal token types. Some examples of
other basic types and subtypes are

� Alpha Ta: no letters capitalized Ta1, first letter capitalized Ta2, all letters capitalized Ta3,
mixed cases Ta4, etc.

� Numeric Tn: plain numbers (Tn1), numbers containing periods or colons Tn2, etc.
� Entity Te: internet addresses Te1, credit card numbers Te2, etc.
The third step identifies and separates punctuation marks. Therefore, remaining tokens

of unknown type Tu ending with a punctuation mark are investigated as possible sentence
ends. If the complete token string does not match an entry in one of the repositories (e.g.,
lists of abbreviations, acronyms, regular expressions rules for single-token or multi-token
typing), the last character is split and a new token is created together with its corresponding
token type (see 1 in Figure 4.5). To assure the correctness of this splitting operation, a set of
context-sensitive rules is applied. A token ending with a period and followed by a lower case
token is not split, because the period does not mark the end of a sentence (see 2 in Figure 4.5).

1 … a sentence end. The next …
 Ta1 Ta1 Tu Ta2 Ta1

… a sentence end . The next …
 Ta1 Ta1 Ta1 Teos Ta2 Ta1

2 … the U.S. government has …
 Ta1 Tu Ta1 Ta1

… the U.S. government has …
 Ta1 Tu Ta1 Ta1

Rule 1
 IN: tin,1.type = Tu AND tin,1.str.endsWith(’.’) AND tin,2.type = Ta2
 OUT: tout,1.str = tin,1.str.substr(0,length-1) AND
 tout,1.type = getType(tout,1.str) AND
 tout,2.str = ’.’ AND tout,2.type = Teos AND
 tout,3.str = tin,2.str AND tout,3.type = tin,2.type

Figure 4.5: Example rule for punctuation mark splitting

A set of advanced user-defined token typing rules is then used to reinterpret, group, and
split singe-tokens (steps 4–6 in Algorithm 4.1). The user is enabled to define custom rules
to support domain-specific needs. These rules may also include references to the previously
assigned single-token types.

4

4.4 Extended Tokenization 87

Examples of advanced user-defined types are stopwords U1, abbreviations U2, acronyms
U3, dates and times U4, phone numbers U5, email addresses U6, and a sequence of capitalized
single-tokens U7 (in many cases extended keywords). These token types are assigned by
applying two strategies: First, tokens are compared to a repository of reliable entries (string,
token type) created either by a human expert or a (semi-)automatic machinery. If no match
occurs, an ordered list of rules is applied to process the tokens and token sequences. The
rules include regular expression matching of token strings (see 3 in Figure 4.6), matching of
token types (see 4 in Figure 4.6), and combinations of both (see 5 in Figure 4.6).

1 … a sentence end. The next …
 Ta1 Ta1 Tu Ta2 Ta1

… a sentence end . The next …
 Ta1 Ta1 Ta1 Teos Ta2 Ta1

2 … the U.S. government has …
 Ta1 Tu Ta1 Ta1

… the U.S. government has …
 Ta1 Tu Ta1 Ta1

Rule 1
 IN: tin,1.type = Tu AND tin,1.str.endsWith(’.’) AND tin,2.type = Ta2
 OUT: tout,1.str = tin,1.str.substr(0,length-1) AND
 tout,1.type = getType(tout,1.str) AND
 tout,2.str = ’.’ AND tout,2.type = Teos AND
 tout,3.str = tin,2.str AND tout,3.type = tin,2.type

3 … call +43 (0)462 2700 for …
 Ta1 Tu Tu Tn1 Ta1

4 … the Central Intelligence Agency is …
 Ta1 Ta2 Ta2 Ta2 Ta1

Rule 2
 IN: tin,1.type = Tu AND tin,2.type = Tu AND tin,3.type = Tn1 AND
 (tin,1.str tin,2.str tin,3.str).match(+[0-9]+\s\(0\)[0-9]+\s[0-9]+)
 OUT: tout,1.str = (tin,1.str tin,2.str tin,3.str) AND tout,1.type = U5

… call +43 (0)462 2700 for …
 Ta1 U5 Ta1

… the Central Intelligence Agency is …
 Ta1 U7 Ta1

Rule 3
 IN: tin,1.type = Ta2 AND tin,2.type = Ta2 AND tin,3.type = Ta2
 OUT: tout,1.str = (tin,1.str tin,2.str tin,3.str) AND tout,1.type = U7

5 … Information Retrieval (IR) …
Ta2 Ta2 Tpm Ta3 Tpm

Rule 4
 IN: tin,1.type = Ta2 AND tin,2.type = Ta2 AND tin,3.type = Tpm AND tin,4.type = Ta3 AND
 tin,5.type = Tpm AND tin,3.str.eqals(“(“) AND tin,5.str.equals(“)“)
 OUT: tout,1.str = (tin,1.str tin,2.str) AND tout,1.type = U7 AND

tout,2.str = tin,3.str AND tout,2.type = tin,3.type AND
tout,3.str = tin,4.str AND tout,3.type = U3 AND
tout,4.str = tin,5.str AND tout,4.type = tin,5.type

… Information Retrieval (IR) …
U7 Tpm U3 Tpm

Figure 4.6: Tokenization rules

The examples in Figure 4.5 and Figure 4.6 outline the syntax of the tokenization rules.
Each rule consists of a condition part IN (input sequence of typed tokens) and a consequence
part OUT (output sequence of typed tokens). The numbered indices of tokens indicate relative
token positions. The rule-based approach is based on simple and pure linguistic functional
interpretation of basic token types and token strings in a given context. Example types of
rules may cover morphological, syntactical, and general patterns like

� sentence border disambiguation
� multi-token identification
� special character treatment (e.g., apostrophes, slashes, ampersand etc.)
� suffix identification of well-known endings (e.g., -ly, -ness).
� identification and reconcatenation of hyphenated words at line breaks
� abbreviation treatment

88 4 Natural Language Text Representation

4.4.3 JavaTok

This section describes the architecture of JavaTok, a freely configurable tokenizer developed
in JAVA. To cope with language dependent occurrence of special characters (country specific
characters like Slavic diacritics, French accents, umlauts and sharp s in German, etc.), JavaTok
enables a Unicode-conform UTF-16 [243, 244] initialization and input/output processing. For
the purpose of convenient higher-level tokenization the following features are necessary:

� free configuration and adaptation (character definitions, tokenization strategies)
� string replacements (abbreviation resolution, zero elimination, string and thesaurus-like

substitution of multiple length)
� user-defined token type definition
� rule-based token typing (credit card numbers, phone numbers, dates, internet addresses,

special IDs, . . .)
� pre-tagging functionality (based on token types)
� compound noun and proper name identification
� multi language support
� process statistics and runtime performance measurements
� multiple output formats

As presented, Extended Tokenization is defined as a rule-based process that includes
basic linguistic knowledge. In case of ambiguity JavaTok does not make assumptions or
guesses. Uncertain borders of tokens or sentences are not further interpreted or touched. This
is because misinterpretation of tokens at an early stage leads to poor overall performance
during language analysis. JavaTok also does not carry out any kind of character conversion
automatically, hence other tools operating on the tokenizers’ output may loose important
information (such as the case of letters during tagging).

Architecture

Major aims were to support web-based processing, easy integration in existing software
systems, and good overall performance. Therefore, the functionality of JavaTok can be
accessed in three different ways:

� JavaTok operates as stand-alone software called from the command line. All initializations
are specified via XML configuration files. JavaTok supports single file and batch
processing, providing TXT, XML, and HTML output formats.

� The functionality of JavaTok can be included into other JAVA-based projects by simply
importing JavaTok as a single JAVA class. Initialization and computation is done via
public methods. An OutputFormatter is included supporting TXT, XML, and HTML.

4

4.4 Extended Tokenization 89

� It is possible to access the tokenizer via internet as a servlet running on a Tomcat
webserver. The online version is available at the Klagenfurt CLR web portal [123].

Figure 4.7 depicts the workflow of JavaTok. A single configuration file contains the
input file, output file, parameter settings, and references to dictionaries and knowledge
bases containing typing rules for single-tokens and multi-tokens. String replacements are
carried out at the very beginning, eliminating undesired markup or known noise in the
input texts. In a next step tokens are split according to the delimiter definitions. Subsequent
single-token typing is carried out, assigning each token its basic token type (including Tu for
unknown tokens). Punctuation mark splitting is only applied to tokens of unknown type.
First, punctuation marks at the beginning of a token are separated and typed as Tpm. Then, if
possible, single sentence end marks are split from the end of the tokens and typed as Teos.
Finally, remaining punctuation marks are isolated from the end of the token and typed as Tpm.
After the splitting of punctuation marks multi-token types are identified. Finally, optional
abbreviation substitution in both directions (expansion and abbreviation) is accomplished.

String
replacement

Plain natural
languag text

Delimiter-based
token splitting

Dictionary-based
multi-token typing

(e.g., named entities)

Rule-based
multi-token typing

(e.g., hyphens)

Substitution of
abbreviations and

acronyms

JavaTok

Tokenized text

Dictionary-based
single-token typing
(e.g., abbreviations)

Rule-based
single-token typing

(e.g., special formats)

Punctuation mark
splitting

Figure 4.7: The architecture of JavaTok

During all typing tasks priority is given to repository lookup. The rules for typing address
token strings, token types, or both using regular expressions. The order of the tokenization
rules is of great importance. The rules are applied sequentially, thus rules firing earlier
prevent firing of later rules.

Sample Tokenization Outputs

In the example given in Figure 4.8 basic token types Ta1, Ta2, Ta3, and Tpm (see Section 4.4.2)
are concatenated to tokens using a separating slash. Sequence of tokens creating multi-tokens
are parenthesized.

User-defined token types are ABBR (abbreviation) and INST (institution). The mode
describes whether single-token typing is enabled (S), whether multi-token typing is enabled

90 4 Natural Language Text Representation

(M), and whether known abbreviations are replaced (R). A known abbreviation in the
example is aka., standing for also known as. Red Cross is a known institution. RK is an
unknown abbreviation standing for ‘Red Cross’.

The/Ta2 (Red/Ta2 Cross/Ta2)/INST is/Ta1 aka./ABBR RK/Ta3 ./Tpm

The/Ta2 Red/Ta2 Cross/Ta2 is/Ta1 also/Ta1 known/Ta1 as/Ta1 RK/Ta3 ./Tpm

The Red Cross is aka. RK.
The Red Cross is aka. RK .

The Red Cross is also known as RK .

The (Red Cross)/INST is aka. RK .

The (Red Cross)/INST is (also known as)/ABBR RK .

The/Ta2 Red/Ta2 Cross/Ta2 is/Ta1 aka./ABBR RK/Ta3 ./Tpm

S M R

x

x

x x x

x x

x x

x

x x

The/Ta2 (Red/Ta2 Cross/Ta2)/INST is/Ta1 (also/Ta1 known/Ta1 as/Ta1)/ABBR RK/Ta3 ./Tpm

Figure 4.8: Sample JavaTok outputs

Tagging Optimization by JavaTok

Figure 4.9 shows the effect of Extended Tokenization on state-of-the-art tagging outputs. For
evaluation purposes three freely available taggers are used: QTag [204] developed at the
University of Birmingham, POStaggerME [192] available as part of the OpenNLP package
provided by SourceForge, and Stanford POS Tagger [231] implemented by the Stanford Natural
Language Processing Group.

The initial input sentence at the top of the figure comprises some of the discussed
delimitation problems that motivate token typing and multi-token concepts. Cell (1) contains
QTag outputs, cell (2) POStaggerME outputs, and cell (3) Stanford POS Tagger outputs. Lines
1a), 2a) and 3a) refer to standard tagging outputs after rudimentary tokenization, whereas
lines 1b), 2b) and 3b) show the improved tagger outputs including preceded Extended
Tokenization done by JavaTok. In the figure, underlines mark the tokens identified which
served as input for the tagger. Tags assigned are located below the corresponding tokens,
including NN (noun), VB (base verb), VBG (infinitive verb), VBZ (present tense verb, 3rd

person singlular), DOZ (does), XNOT (negative marker), J J (adjective), IN (preposition), RB
(adverb), CD (number), SYM (symbol), LS (single letter), FW (foreign word), ” (quotation
mark), : (punctuation marks), and . (period). Tags written in bold are changed through
JavaTok-specific groupings and/or splittings, thus resulting in optimized tagging inputs.
Tagging improvement is achieved in two respects:

� Direct changes of tags through empirically motivated and more adequate input units
� Indirect changes of tags through changes of linguistic contexts

4

4.5 Tagging 91

a)

b)

Straight $n x n$ mapping doesn't fit into ... [5 , 7] .
JJ " NN NN VBG DOZ JJ IN CD NN CD , CD NN .

Straight $n x n$ mapping does not fit into ... [5, 7] .
JJ " NN DOZ XNOT VB IN CD NN .

Straight $n x n$ mapping doesn't fit into ... [5 , 7] .
JJ NN JJ NN NN RB VB IN : IN CD , CD NN .

Straight $n x n$ mapping does not fit into ... [5, 7] .
JJ NN NN VBZ RB VB IN : CD .

Straight $n x n$ mapping doesn't fit into ... [5 , 7] .
JJ NN LS FW VBG JJ NN IN : SYM CD , CD NN .

Straight $n x n$ mapping does not fit into ... [5, 7] .
JJ NN NN VBZ RB VB IN : CD .

1

a)

b)

2

a)

b)

3

Straight $n x n$ mapping doesn't fit into ... [5, 7].

Figure 4.9: Tagging improvements through Extended Tokenization

Operating on the output of tokenization, tagging, the subsequent step of natural language
processing, is described in the next section.

4.5 Tagging

Tagging is defined as the process of assigning syntactic categories in the form of Part-Of-
Speech (POS) tags to words [173, pp. 341]. Compared to full syntactic parsing, the advantages
of tagging are its stability and good computational performance. This is the reason for
applying tagging before higher-level processing tasks (e.g., named entity recognition, chunk
parsing) [39].

In most cases multiple syntactic categories can be assigned to a single word. Hence, the
goal of tagging can be reformulated as: determine the correct (i.e., the most likely) category of
a word in a given context. In other words, tagging is the disambiguation of part-of-speech [16].
In this process the set of all tags – the tagset – has a major impact on the performance of
a tagger. A balance has to be found between the granularity of word categories and the
accuracy of the tagger. In languages with rich morphology (e.g., German) this is extremely
difficult. Two well known tagsets are those used in the Penn Treebank project2 (for English),
and the Stuttgart-Tübingen TagSet (STTS) [218] (for German).

Two groups of taggers [46, pp. 224] can be distinguished:

2http://www.cis.upenn.edu/∼treebank (19.03.2008)

92 4 Natural Language Text Representation

Stochastic taggers identify word categories using the probability of word category in a
given context of other words and categories. Most of these taggers rely on hidden
markov models (using the Viterbi algorithm [19, pp. 202–204]), decision trees, maximum
entropy approaches, or support vector machines. Examples are the TreeTagger [221, 222],
QTag [242], and TnT Tagger [31].

Rule-based taggers apply rules learned from a corpus to assign initial categories to the words.
In a second step transformations are iteratively applied to change those initial tags to
achieve better accuracy. In contrast to stochastic taggers the knowledge is encoded in a
human-readable form. Thus, their performance can be increased by adding or adapting
rules in the rule base. A well known example is the Brill tagger [34, 36].

Good overviews about the approaches are given by Abney [16], and Glass and Bangay [99].
Comparisons of tagging results are provided in [99, 205, 245].

In order to achieve proper tag assignments three different information sources are sug-
gested [36]:

1. Lexical lookup is used to assign each term its possible tags according to the entries in
a dictionary (e.g., constructed from a pre-tagged corpus). Thus, it is possible that a
single word is assigned more than one category per se (e.g., run can be a verb or noun).
Surprisingly, the accuracy of simply assigning each word its most likely tag (due to
statistically ranked word tags in the dictionary) achieves up to 90% [173, pp. 344].

2. Morphologic analysis is capable of deciding a words’ category. For instance, in English
texts words ended by -ion (nouns), -able (adjectives), or -ly (adverbs) are easy to
identify. However, there exist several exceptions to these rules (just think about July or
cable). Weischedel et al. [256] and Samuelsson [215] summarize interesting experiments
dedicated to the prediction of unknown word categories.

3. Context rules are applied to identify tags depending on their contexts. In most cases
only preceding tokens are taken into account. The complexity of generating such rules
increases exponentially with their window size (number of tokens they include). This
is the main reason why most taggers consider n-grams: unigrams (one word context),
bigrams (two words context), and trigrams (three words context). An example rule looks
like DET + ? + N → ADJ, which alters an unknown tag ? embraced by a determiner
DET and a noun N to an adjective ADJ.

Table 4.10 depicts the general processing steps of assigning tags to words. The first step
assigns each word its most likely tag according to a dictionary. Thus, the words the and an

are determiners DET, lady is a noun NN, is is an auxiliary verb AUX, and the period defines
the end of a sentence $. In step 2 morphological rules are applied on unidentified words not

4

4.6 Stopword Filtering 93

included in the dictionary. The suffixes -ing for verbs VB and -ive for adjectives ADJ are taken
for granted. Finally, step 3 applies context dependent transformations on tags. Therefore, two
rules DET + ? + NN → ADJ and DET + ADJ + ?→ NN are applied.

Table 4.10: The process of assigning part-of-speech tags
Original: The nice lady is buying an expensive car .
Step 1: DET ? NN AUX ? DET ? ? $
Step 2: DET ? NN AUX VB DET ADJ ? $
Step 3: DET ADJ NN AUX VB DET ADJ NN $

However, the assignment of tags to words in real-world texts is not as simple as the
example in Table 4.10 suggests. There are only very few situations where assignments are
either unambiguous or can be restricted to a single tag. Furthermore, different languages
require different efforts based on their morphological richness and syntactical freedom in
positioning words and phrases. For instance, morphology and grammar in languages such as
German and French are more complex than they are in English.

In this work tagging is exploited for the purpose of term selection. Therefore, only terms
assigned to a certain subset of part-of-speech tags (i.e., nouns and verbs) are selected to create
the index. All other terms (i.e., determiners, interjections, adjectives, adverbs) are simply
neglected. This selection process reduces the amount of index terms and speeds up retrieval.
However, inaccurate tag assignments may still lead to unwanted terms in the index. This
unwanted material is further filtered using stopword lists described in the next section.

4.6 Stopword Filtering

Nearly all researchers working on natural language texts rely on a properly selected set of
words and other items (e.g., alphanumeric combinations, numbers) to filter ‘meaningless’ and
unwanted material. Such low level filtering lists are known as stopword lists, stoplists, or
negative dictionaries. But although most retrieval systems use stoplists, there is astonishingly
few literature about how to systematically generate stopword lists systematically [76, 75].

Most authors think of stopwords as words of little intrinsic meaning that occur too
frequently to be useful when searching texts. Typically, these words are short (only a few
characters), implement only a grammatical function, and don’t add to the meaning of the
sentence [173, pp. 533–534]. Mainly these terms are articles, conjunctions, auxiliary verbs, or
prepositions [46, pp. 482,491]. Some common examples of English stopwords are listed in
Table 4.11.

Filtering stopwords from the set of index terms is done mainly for the reason of dimen-
sionality reduction. Terms regarded as useless are filtered very early and do not need to be
processed (e.g., stemmed) any further. According to Zipf’s law [173, pp. 533–534], this can

94 4 Natural Language Text Representation

Table 4.11: Example for an English stopword list (57 entries) [173, pp. 533]
Special token formats

a also an and as at be but by
can could do for from go have he her
here his how i if in into it its
my of on or our say she that the
their there therefore they this these those through to
until we what when where which while who with
would you your

reduce the indexing vocabulary drastically. Thus, index construction, time, and storage costs
are minimized [110, pp. 141]. Baeza-Yates [21, pp. 167–168] and Grossman [110, pp. 141]
assume that up to 40% of all document terms can be regarded as stopwords.

Chu [52, pp. 8–9] extended this definition of stopwords, including other syntactic cate-
gories such as nouns and verbs. Thus, he added even infrequent, noninformative (e.g., report,
abstract, summary), and domain and corpus specific terms (e.g., computer, information

retrieval), where the latter two are also called trade words [52, pp. 47].

Although nearly all existing IR systems apply stopword filtering, there is still no stan-
dardized list agreed upon. As a consequence, these systems rely either on highly specialized
hand-crafted lists, or on unreviewed lists downloaded from the internet. The drawback in
both cases is that most of these lists are applied as given and remain unchanged.

Many stopword lists can be found in the web for free. Unfortunately very few attention
is put on their linguistic quality, especially if used in restricted domains and application
areas. Hence stoplists are used in nearly all information retrieval applications for early feature
reduction, the retrieval quality highly depends on the content (and structure) of the lists.
Surprisingly, the impact of the linguistic quality of those lists on the retrieval performance is
often underestimated. Anyway, ignoring the effects of stopword filtering during the indexing
and searching process can lead to the following problems:

� Without stopword filtering and a query that requires all terms to match, documents
may be excluded because one of the stopwords did not appear in the document. Even
though the stopword itself is probably irrelevant to what the user is searching for, the
document may have actually been a very good result. For instance, a query cat on a

tree does not match a document stating cat on the tree.

� If a search does not require all terms to match and stopwords are not filtered, any
document containing at least one of the stopwords would be included in the relevant
results. Since stopwords are very common, nearly all documents in the engine’s index
might be retrieved. As an example, the query cat on a tree matches all documents
containing the words a or the (which can be found in nearly all documents).

4

4.6 Stopword Filtering 95

� On the other hand rudimentary filtering of stopwords prohibits precise searches for
query terms like vitamin c or The Round Table. As for the first example, all texts
stating the term vitamin are returned, leading to a high number of irrelevant results.
Generally, words that have different meanings in different contexts, one in which it is
a stopword and an other one in which it is not, pose another problem: Confusing the
noun can with the auxiliary verb can may result in serious troubles. Even more obvious,
phrases consisting entirely of stopwords are hard to handle, for an example consider to
be or not to be.

For those reasons some web engines abstain completely from stopword filtering in order to
maintain high recall and to avoid results that users are unable to interpret [21, pp. 167–168].

4.6.1 The Multi-Layered Stopword Model

This work proposes that the stopword class is much more heterogenous than suggested in
the literature. It is composed of three different layers, as depicted in Figure 4.10. Each layer
is composed of certain groups containing terms sharing syntactic (expressed through word
categories in the figure), semantic (related to common concepts), or domain-specific (related
to concepts in a restricted domain) attributes.

I. Functional stopwords

DET AUX PREP PRON

PART CONN LOG_OP Q

II. Content-related stopwords

N V ADJ

ADV

III. Domain-specific stopwords

N V ADJ

ADV

Figure 4.10: Multi-layered stopword model I

Linguistically argued, stopwords can be distinguished into three layered subsets (see
Figures 4.10 and 4.11):

Functional stopwords define terms which are regarded as traditional stopwords. They
belong to the class of function words (or grammatical words) which have only little
lexical meaning. Normally these terms decode syntactic and morphosyntactic features
(e.g., values of parameters like case, numerus, genus, tempus, modus). Generally,

96 4 Natural Language Text Representation

functional stopwords do not transport any semantics and are not bound to specific
domains. Typical representatives are determiners, auxiliaries, prepositions, pronouns,
particles, conjunctions, logical operators, quantors, etc.

Content-related stopwords are mainly adjectives and adverbs which decode very general
semantic concepts. These stopwords do not contribute to the semantics of a text and are
domain-independent. For the same reason a set of verbs (e.g., able, based, consider)
and nouns (e.g., abstract, degree, goal) also belong to this category.

Domain-specific stopwords are words which refer to domain-specific entities and concepts.
Normally these terms are part of the presupposed knowledge of a domain insider.
Preferred candidates for this group are nouns and named entities (e.g., acronyms), verbs,
adjectives, and adverbs. For domain experts, these words are taken for granted and do
not contain semantically important information. For instance, terms like computer or
data might not be good candidates for a common stoplist. However, both terms may be
perfect stopwords when searching a huge archive about computer related topics.

Functional stopwords

Content-related stopwords

Domain-specific stopwords

co
m

m
on

se
ns

e

no
t

co
m

m
on

se

ns
e

content
related

not
content
related

Figure 4.11: Multi-layered stopword model II

Conducting a three level stopword filtering would allow to focus on certain information
retrieval and document mining tasks while improving the system’s performance regarding
runtime and index space. In the context of this work stopword filtering is applied in two
ways:

1. Stopwords are filtered from the set of index terms, utilizing stopwords in a traditional
manner. This filtering step includes stopwords of all three levels.

2. In document mining tasks, valuable resources aiding information retrieval are extracted
from a corpus automatically. However, the amount of raw data extracted is inapplicable

4

4.6 Stopword Filtering 97

to be applied directly and contains loads of irrelevant information. Therefore, stopword
filtering is applied to exclude unwanted patterns (e.g., phrases started or ended by
stopwords) from further analysis. Chapter 5 provides methods that generate appropriate
dictionaries by applying stopword filtering. These dictionaries include composite nouns,
named entities, formulaic speech, and full forms of acronyms.

From this point of view stopwords have to fulfill both statistic and linguistic criteria. In
the sequel the process of creating and incrementally extending the list of stopwords based on
statistic and heuristic methods is described.

4.6.2 The Stopword Extraction Process

In order to generate a stoplist, this work relies on the corpus described in Section 2.9.1. The
result of this process is a ranked list of terms that are promising candidates. It serves as input
for a linguistically-based categorization and for heuristically motivated layering of useful
stopwords. The process relies on the tokenization output only, thus no part-of-speech tagging
or any other linguistic processing is required.

By going through the corpus in a single pass, the output of the Extended Tokenizer is
used to gather corpus based term statistics. All single-tokens that occur in the texts as ‘proper’
words – defined as a sequence of small letters, optionally started by a single capital letter –
are regarded as potential candidates. Hence filter terms are considered as context free, no left
or right neighborhood is taken into account. The token selection process itself is solely based
on the token-types assigned by the Extended Tokenizer. Other token-types like numbers,
acronyms, or special formats are ignored.

For each term i the term frequency ni (the number of occurrences of term i in the collection)
and the document frequency mi (the number of documents stating term i) are computed.
As this work utilizes structured documents, it is important to note that both frequencies are
computed in a certain context c, resulting in ni,c and mi,c. Thus, the approach can be applied
to generate term statistics based on structural conditions of chapters (/DOC/SEC), on any kind
of sections (//SEC), or on paragraphs (//FRA of type text). The experiments described in this
chapter are conducted using the /DOC context.

Based on the ni,c and mi,c values, the inverse term frequency it fi,c and the inverse document
frequency id fi,c are computed for each term, applying the formulae

it fi,c = log
Nc

ni,c
(4.8)

id fi,c = log
Mc

mi,c
(4.9)

98 4 Natural Language Text Representation

where N (resp. M) is the total number of terms (resp. elements, i.e., documents, chapters,
sections, paragraphs) in the whole collection. The inverse term frequency it fi,c is used to
express the distribution of term i throughout all terms. The higher the value, the more
discriminant is the term i itself. Accordingly, the inverse element frequency id fi,c is computed,
expressing the distribution of term i through the collection. The higher the value, the rarer
the term occurs in the collection.

In order to extract filter terms two parameters have to be specified:

Ranking criteria First, a ranking strategy according to the ‘quality’ of stopwords has to
be specified. Statistically argued stopwords can be defined as extraordinary frequent
words [76], thus terms having a high ni,c (resp. low it fi,c) value. Alternatively, stopwords
can be described as equally distributed throughout all texts, thus having a high mi,c

(resp. low id fi,c) value. In order to express the adequacy of a term i to become a
stopword, both values it fi,c and id fi,c are combined in two different ranking formulae q1

and q2:

q1(ti) = it fi,c · id fi,c (4.10)

q2(ti) =
it fi,c

id fi,c
(4.11)

Cutoff point Second, a certain cutoff point for term selection must be chosen. From the
literature [21, pp. 167], the size of a general stopword list can be estimated to be up
to 500 words. Using the Brown corpus (∼ 1 million words), Fox [76] chose the cutoff
at the minimum term frequency of 300, which was based on an empirical decision.
Used for the experiments in the current work, the top 500 ranked terms are classified as
stopwords.

The extracted stopwords are sorted according to the quality measures q1 and q2 in
decreasing order. Good stopwords are reflected by high q1(ti) and q2(ti) values. This
procedure results in the list given in Figure 4.12 (first 31 words ranked by q2 in descending
order). Note that it f and id f use different scalings: With respect to the INEX corpus, it f
lies between 6,5 and 14,0 because even the most frequent term the does not occur in half of
the cases (where i f ti,c would be 1, 0). In contrast, id f ranges from 0,01 to 27,4 because many
terms occur in more than half of the documents (where id fi,c < 1, 0). This fact explains the
high impact of id f in both, q1 and q2. For the data shown in Figure 4.12, Nc = 178.677.541
denotes the total number of terms, and Mc = 16.819 is the total number of documents in the
collection.

As the list in Figure 4.12 is case sensitive, the 500 selected entries are reduced to 445
unique terms (e.g., see the and The at ranks 6 and 8). These 445 words cover 22,55% of all

4

4.6 Stopword Filtering 99

Rank Term tf df tf/N tf/df tf/M df/M itf idf itf*idf itf/idf
1 and 1962908 16685 0,011 117,645 116,708 0,992 6,508 0,012 0,075 563,959
2 of 2508922 16692 0,014 150,307 149,172 0,992 6,154 0,011 0,067 562,788
3 in 1305290 16661 0,007 78,344 77,608 0,991 7,097 0,014 0,097 521,178
4 for 825446 16628 0,005 49,642 49,078 0,989 7,758 0,016 0,128 470,828
5 to 1607995 16651 0,009 96,570 95,606 0,990 6,796 0,014 0,098 469,233
6 the 4554408 16669 0,025 273,226 270,789 0,991 5,294 0,013 0,068 409,610
7 on 432804 16526 0,002 26,189 25,733 0,983 8,689 0,025 0,220 342,719
8 The 610316 16502 0,003 36,984 36,287 0,981 8,194 0,027 0,225 298,480
9 a 1638311 16519 0,009 99,177 97,408 0,982 6,769 0,026 0,176 260,692
10 with 441110 16399 0,002 26,899 26,227 0,975 8,662 0,036 0,316 237,419
11 is 1217004 16395 0,007 74,230 72,359 0,975 7,198 0,037 0,265 195,403
12 as 458504 16277 0,003 28,169 27,261 0,968 8,606 0,047 0,407 182,115
13 that 735657 16312 0,004 45,099 43,740 0,970 7,924 0,044 0,350 179,448
14 from 318606 16193 0,002 19,676 18,943 0,963 9,131 0,055 0,500 166,869
15 at 269050 16162 0,002 16,647 15,997 0,961 9,375 0,057 0,539 163,087
16 by 411139 16200 0,002 25,379 24,445 0,963 8,764 0,054 0,474 161,993
17 an 348925 16176 0,002 21,571 20,746 0,962 9,000 0,056 0,506 160,041
18 are 500252 16161 0,003 30,954 29,743 0,961 8,480 0,058 0,488 147,293
19 this 300385 16006 0,002 18,767 17,860 0,952 9,216 0,071 0,659 128,937
20 or 260560 15964 0,001 16,322 15,492 0,949 9,422 0,075 0,709 125,170
21 be 488328 16001 0,003 30,519 29,034 0,951 8,515 0,072 0,613 118,383
22 have 200305 15723 0,001 12,740 11,909 0,935 9,801 0,097 0,953 100,817
23 more 135450 15548 0,001 8,712 8,053 0,924 10,365 0,113 1,175 91,435
24 has 164753 15538 0,001 10,603 9,796 0,924 10,083 0,114 1,152 88,221
25 can 339785 15665 0,002 21,691 20,202 0,931 9,039 0,103 0,927 88,140
26 it 248590 15579 0,001 15,957 14,780 0,926 9,489 0,110 1,048 85,885
27 In 230778 15544 0,001 14,847 13,721 0,924 9,597 0,114 1,091 84,378
28 also 125177 15409 0,001 8,124 7,443 0,916 10,479 0,126 1,324 82,958
29 This 160795 15356 0,001 10,471 9,560 0,913 10,118 0,131 1,328 77,066
30 which 224461 15313 0,001 14,658 13,346 0,910 9,637 0,135 1,304 71,206
31 not 223089 15272 0,001 14,608 13,264 0,908 9,646 0,139 1,343 69,291

Figure 4.12: Top ranked INEX stopwords using q2

words in the INEX document collection, where the minimal term frequency ni,c is 8271 and
the minimal document frequency Mi,c is 5342.

Figure 4.13 overviews the top 500 results applying different ranking strategies. Ranking
strategies combined term frequency t f and document frequency d f (resp. it f and id f), and
their performance is compared to each other. The first row headed by # SW counts the number
of relevant stopwords (out of the 500 extracted) compared to the final reference list. Green
colored cells explicitly mark the words contained in the final list. In their work Grossman
and Frieder stated that “using term frequency is a means of implementing a dynamic stop
word list” [110, pp. 197]. Indeed, at the first glimpse term frequency t f based ranking looks
as a good indicator.

But the results of the experiments show that this method generates many unwanted
stopwords already among the top 100 ranks. Already at ranks 29, 31, and 34 frequent nouns
such as data, system, and time occurred (see Figure 4.13). All in all, 193 of the final stopwords
are identified. The (inverse) document frequency d f , id f based ranking performed clearly
better, including unwanted results at lower ranks 49 (time), 64 (example) and 65 (work). The
500 terms extracted include 251 final stopwords. The worst performance with only 67 accepted

100 4 Natural Language Text Representation

SW 193 251 67 219 245 262
Rank tf df, idf tf/df, df/tf tf * df itf * idf itf/idf

1 the of the the of and
2 of and of of the of
3 and the and and and in
4 a in a a in for
5 to to to to to to
6 in for in in for the
7 is on is is a on
8 for a for for on The
9 that The that that The a

10 The with itemsets The is with
11 are is The are with is
12 be that are be that as
13 as as be as as that
14 with by itemset with by from
15 on from quorum on are at
16 by an as by from by
17 an at Jul an an an
18 can are with can at are
19 we this on from be this
20 from be by this this or
21 this or submesh we or be
22 at have we at can have
23 or can coterie or have more
24 it it hypernode it it has
25 In more can In In can
26 which In multidestination which has it
27 not has an not more In
28 have also supernode have which also
29 data This from has also This
30 each which checkpoint data This which
31 system not minutiae This not not
32 has other trie all all other
33 This all this each other their
34 time such authorizations one such such
35 all will i time will all
36 We their cache will their will
37 one one node system one these
38 will these quorums such these one
39 such than at more than than
40 two its or two its its
41 more use subcube We use use
42 number into watermark also into into
43 was but it its For but
44 set For data other but For
45 also two declustering was two only
46 its only In these we they
47 used they which than only new
48 other new not For time two
49 For time n used they It
50 these we t use new some
51 than some query number each most
52 if It image only using time
53 only using algorithm set some using
54 use most checkpoints their It many
55 model each submeshes if used first
56 using used Sep using was when
57 information first k into between so
58 between when nodes between when between
59 our between faults information first used
60 their was have but most each
61 into many system when system been
62 algorithm been x systems example example
63 systems so p where been we
64 where example checkpointing example many was
65 when work each our if work

Figure 4.13: Comparison of different ranking criteria

4

4.6 Stopword Filtering 101

stopwords is achieved with fractions of raw term and document t f
d f and d f

t f . Ranking based
on t f · d f leads to better results containing 219 final stopwords. Best results are achieved
using a combination of it f and id f . The explanation for this behavior is that the high term
frequency t f influences the ranking much more than the lower element frequency d f , which
is smoothed by the logarithm. Surprisingly, q1 = it f · id f extracting 245 stopwords performs
slightly worse than q2 = it f

id f extracting 262 stopwords. However, there is no big difference in
the results compared to simple element frequency d f (resp. id f) ranking, which achieved 251
of the final stopwords.

To summarize the results of the experiments, rankings including the (inverse) element
frequency obviously outperform the other strategies, where the best results are tight-fitting,
relying either on the raw element frequency d f , q1(ti), or q2(ti).

The top two lists acquired by using the plain element frequency d f ranking and q2

ranking only differ with respect to 20 terms. The d f list exclusively contains the terms state,
test, code, communication, points, respectively, product, operation, parallel, task, line,
memory, quality, you, parameters, source, power, Table, behavior, and elements. The q2-
ranked list exclusively contains especially, advantage, providing, once, works, yet, details,
little, involved, developing, likely, smaller, back, increasing, across, recent, depends,
and ability. From a linguistic point of view, the q2-ranked list seems slightly better because it
includes more terms fitting in the functional and content-related stopword layers. In contrast,
the other strategy favors nouns and verbs. However, differences occur only at ranks lower
than 337. Ranks of the first hundred entries are nearly identical, differing only in up to five
positions for each stopword.

According to the multi-layered stopword model extracted stopwords are (sub)classified in
the previously described layers.

4.6.3 Identification of Functional Stopwords

Starting with the q2-ranked stopword candidates generated, a list of functional stopwords
is created. This list covers most of the words included in traditional stopword lists. A
classification system is applied for a systematic generation of an extended functional stopword
list. The classification is based on the widely accepted schema of linguistic word categories:

Determiners (DET) are noun specifiers that express definiteness or indefiniteness of a noun
phrase (e.g., a, the). In many languages, for instance German, it additionally encodes
morphosyntactic information like casus, genus, and numerus (e.g., dieser, eine, das).

Auxiliary verbs (AUX) are verbs that accompany the head verb of the sentence, expressing
grammatical distinctions like person, number, tempus, aspect (e.g., can, may, do, be,
have).

102 4 Natural Language Text Representation

Prepositions (PREP) are non-inflected elements that govern the case of their nominal comple-
ments (e.g., in, on, upon, by).

Pronouns (PRON) are pro-forms that substitute noun phrases. They decode values of pa-
rameters like person, genus, numerus. Common types are personal, possessive, and
interrogative pronouns (e.g., he, her, who).

Particles (PART) are non-inflectional words that do not have any governing function. They
belong to very heterogenous subclasses like verb particles (e.g., [stand] up, [bring]
down), model particles (e.g., quite, very), and infinitive particles (e.g., to).

Connectors (CONN) are coordinating or subordinating conjunctions that establish semantic
relations between parts of sentences or whole sentences (e.g., further, hence, since).

Logical operators (LOG_OP) establish logical connections or interpretations concerning ele-
ments in their scope (e.g., and, or, not).

Quantifiers (Q) express a definite or indefinite number of entities. Normally, three groups
can be distinguished: fuzzy (e.g., some, many), numeral (e.g., two, million), and cardinal
(e.g., second, fifth) quantors.

Further admissible candidates for functional stopword lists are interjections (e.g., oh,
ah, hey, man, uhhh), negatives (e.g., no, not), politeness markers (e.g., please, thank you),
greetings (e.g., hello, goodbye), and the existential there. However, these category labels are
not used for categorization in this work. One might note that the categories strongly correlate
with part-of-speech tags used by well known tagging systems.

The list in Table 4.12 contains 140 functional stopwords that cover 36,3% (34.299.626) of
all terms in the whole INEX collection. Figure 4.14 shows the number of documents terms
according to the functional stopword categories.

The subclassification of functional stopwords supports further linguistic tasks such as
composite noun identification and acronym resolution (see next chapter). Further selection
of certain subsets of functional stopwords strongly depends on the focus of the application.
For instance, the task of comparing queries and metadata information (e.g., section titles,
table captions, authors) may require only specific functional stopword categories such as DET,
PREP, CONN, and LOG_OP.

4.6.4 Identification of Content-Related Stopwords

In addition to functional stopwords many other terms can be regarded as stopword candidates.
For instance, commonly occurring nouns, verbs, adverbs, or adjectives are also very frequent
and equally distributed throughout document collections.

4

4.6 Stopword Filtering 103

Table 4.12: List of functional stopwords
Category Terms
DET (10) a, an, here, some, that, the, there, these, this, those

AUX (26)
are, be, become, becomes, been, being, can, cannot, could, do, does, done, had,
has, have, having, is, make, may, might, must, should, was, were, will, would

PREP (29)

about, above, across, after, against, along, among, amongst, around, aside, at,
before, beforehand, behind, below, beside, between, beyond, by, down, for, from,
in, into, near, of, on, out, outside, per, since, through, thru, to, toward,
towards, under, until, unto, up, upon, via, with, within, without, off

PRON (22)

another, anybody, anyhow, anyone, anything, anyway, anywhere, during, elsewhere,
everybody, everyone, everything, everywhere, he, her, hers, herself, him,
himself, his, how, i, it, its, itself, me, my, myself, nobody, none, noone,
nowhere, onto, our, ours, ourselves, she, somebody, somehow, someone, something,
sometime, somewhat, somewhere, such, that, their, theirs, them, themselves,
they, us, we, what, when, whence, where, which, whither, who, whoever, whom,
whose, why, you, your, yours, yourself, yourselves, whomever

PART (12)
almost, as, down, even, just, no, out, over, quite, rather, so, to, too, up,
very, yes, off

CONN (20)

after, although, and, because, before, but, further, furthermore, hence,
howbeit, if, insofar, instead, like, neither, nor, not, or, since, than, then,
thence, therefore, though, thus, unless, until, whenever, whereafter, whereas,
whereby, wherein, whereupon, wherever, whether, while, nonetheless

LOG_OP (3) and, not, or

Q (18)
all, both, each, every, few, first, five, four, many, much, often, one, second,
some, third, three, two, various

8779156

3946023

9370597

2996848
2545394

3426610

1962908

1272090

9,5% 4,2% 10,1% 3,2% 2,7% 3,7% 2,1% 0,7%
0

2000000

4000000

6000000

8000000

10000000

DET AUX PREP PRON PART CONN LOG_OP Q

Category

Te
rm

 fr
eq

ue
nc

y

Figure 4.14: Frequency distribution of linguistic categories in functional stopwords

Terms that can be taken for granted throughout all domains (common knowledge) are
regarded as content-related stopwords. Characteristically, these terms occur quite frequently
and are equally distributed in documents of any document collection. Due to the generic
usage, such terms do generally not add valuable information to standard texts (e.g., use,
accordingly, certain, problem).

104 4 Natural Language Text Representation

For instance, consider three different texts: one about social and cultural effects, an-
other one about effects of protuberances on the climate, and a third one about effects
of a new indexing method. All texts deal about certain effects. However, only few users are
interested in information about general effects of any kind. Thus, the term effect can be
considered as a content-related stopword. Content-related stopwords are classified according
to the following categories:

Nouns (N) are words which refer to entities or groups of entities (persons, places, names,
concepts, etc.). In many cases they bear the most relevant information of sentences,
populating the verb argument structure. For the purpose of extending the stopword list
those nouns which carry hardly any information without considering their context are
picked. Thus, they refer to proper and common nouns that can be regarded as common
knowledge (e.g., abstract, field, example, conclusion).

Verbs (V) typically encode events, actions, or processes. In a syntactical sense they constitute
predicates in clauses, establishing a verb argument structure. In many theories they
function as heads of sentences [72]. For the sake of this purpose verbs that do not
transport much content (e.g., use, apply, seem, go) are selected.

Adjectives (ADJ) are words which normally modify nouns by specifying properties or other
qualities. In a syntactical sense they function as attributes or parts of predicates (e.g.,
low, high, normal, fast).

Adverbs (ADV) are words which modify verbs or adjectives. Examples of stopwords in this
category are quickly, accordingly, efficiently, etc.

By manually assigning the remaining q2-ranked terms (excluding functional stopwords) to
these categories, a list of 271 content-related stopwords is derived (see Table 4.13). The same
word with different meanings is assigned to all possible categories (i.e., run [N,V], study
[N,V], potential [N,ADJ], focus [N,V]).

The final list covers 8,6% (8.025.990) of all terms in the document collection. The union
of the content-related and the functional stopwords covers 44,9% of all terms in the whole
collection. The distribution of content-related stopword categories is given in Figure 4.15.

One way to extract content-related stopwords automatically is to use a number of docu-
ment collections from different domains. On these corpora, the top ranked terms are extracted
as described and functional stopwords are removed. Consequently, the intersection of the
resulting lists (one list for each corpus) defines the domain-independent and content-related
stopwords.

4

4.6 Stopword Filtering 105

Table 4.13: List of content-related stopwords
Category Terms

ADV (35)

along, already, also, always, any, back, currently, directly, due, easily,
either, especially, even, far, finally, first, however, less, likely, more,
most, much, now, often, once, only, over, rather, simply, still, together,
usually, very, well, yet

ADJ (61)

additional, appropriate, available, basic, best, better, certain, common,
complete, current, different, difficult, due, easy, enough, entire, full,
general, good, high, higher, important, independent, initial, large, larger,
last, later, least, little, long, low, lower, main, major, necessary, new, next,
original, other, own, particular, possible, potential, previous, real, recent,
right, same, several, significant, similar, simple, single, small, smaller,
special, specific, standard, total, useful

N (74)

ability, abstract, addition, address, advantage, amount, area, areas, basis,
case, cases, change, changes, cost, curricula, degree, details, difference,
effect, end, example, fact, field, focus, form, future, goal, group, hand, help,
individual, interest, interests, issue, issues, key, level, means, need, needs,
order, others, paper, part, place, point, potential, problem, problems, project,
range, result, results, section, set, sets, size, solution, space, step, study,
support, terms, time, times, type, types, use, view, vitae, way, ways, work,
years

V (100)

able, according, achieve, address, allow, allows, applied, apply, associated,
assume, based, called, change, compared, consider, considered, consists,
contains, corresponding, create, depends, describe, described, determine,
effect, end, existing, find, focus, following, follows, form, found, get, give,
given, gives, group, hand, help, improve, include, includes, including,
increase, increasing, involved, issue, issues, know, known, let, like, limited,
made, makes, making, need, needed, needs, obtain, obtained, order, part, place,
point, present, presented, produce, proposed, provide, provided, provides,
providing, received, reduce, related, require, required, requires, result,
resulting, see, set, show, shown, shows, step, study, support, take, takes,
type, use, used, uses, using, work, working, works

1275990

1634464

2369082

2746454

1,4% 1,8% 2,6% 3,0%
0

500000

1000000

1500000

2000000

2500000

3000000

ADV ADJ N V

Category

Te
rm

 fr
eq

ue
nc

y

Figure 4.15: Frequency distribution of linguistic categories in content-related stopwords

106 4 Natural Language Text Representation

4.6.5 Identification of Domain-Specific Stopwords

These stopwords are defined as terms that can be taken for granted in a given domain. In
this sense they do not add information to texts in a given specific domain. This hypothesis is
based on the assumption that domain experts normally presuppose a finer granulated domain
vocabulary decoding their knowledge. Domain-specific stopwords are classified according
to the same categories as the content-related stopwords (e.g., in the domain of computer
science):

Nouns (N) like computer, memory, model, etc.

Verbs (V) like perform, calculate, run, etc.

Adjectives (ADJ) like efficient, supervised, etc.

Adverbs (ADV) like automatically, effectively, etc.

Table 4.14 shows the manually extracted domain-specific stopwords. This work relies on
the INEX document collection derived from computer science literature. Hence, its application
domain is computer science and information technology.

Table 4.14: List of domain-specific stopwords
Category Terms
ADV (0)
ADJ (6) complex, effective, efficient, local, national, technical

N (58)

access, algorithm, algorithms, analysis, application, applications, approach,
approaches, architecture, complexity, computer, control, data, department,
design, development, environment, features, function, functions, hardware,
implementation, information, input, institute, knowledge, management, member,
method, methods, model, models, network, number, operations, performance,
process, professor, program, requirements, research, science, software,
structure, system, systems, technology, trans, university, user, users,
components, technique, techniques, tools, value, values, version

V (27)
computing, develop, developed, developing, distributed, engineering, generate,
generated, implemented, perform, performed, processing, represent, represents,
sets, define, defined, designed, run, supported

The final domain-specific stopword list comprises 91 terms covering 4,7% (4.379.991) of all
terms in the document collection. Merged with the functional and content-related stopwords,
the complete list (445 unique stopwords) covers about 49,6% of all terms in the corpus.
Figure 4.16 gives an overview of the distribution of the domain-specific stopword categories.

4.6.6 Extending the Stopword List

Providing additional knowledge about the language, the stopword list created by the steps (1)
to (3) can be further extended. As an example additional terms that are (semi-)automatically
identified through morphological rules are included.

4

4.6 Stopword Filtering 107

0
114339

3322177

943475

0,0% 0,1% 3,6% 1,0%
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

ADV ADJ N V

Category

Te
rm

 fr
eq

ue
nc

y

Figure 4.16: Frequency distribution of linguistic categories in domain-specific stopwords

In further experiments conducted, adverbs (-ly) and verbs (-ing, -ed) are selected from
the INEX corpus because of their simple identification via suffix matching. Therefore, the
q2-ranked terms of the corpus are investigated. The list included 344 terms ending with -ly

(adverb candidates), 839 terms ending with -ing (verb candidates), and 795 terms ending
with -ed (verb candidates). Each of the three lists is cut after 50 entries and the terms are
manually checked for their correct word category. Only five non-adverbs (only, apply, early,
July, Only), two non-present-tense verbs (during, During), and two non-past-tense verbs
(need, speed) had to be removed. The remaining terms are assigned to the set of functional F,
content-related CR, or domain-specific CS stopwords according to their category. The added
stopwords are given in Table 4.15.

The resulting stoplist contains 530 unique terms and covers 51,0% of all words in the
document collection. The inclusion of the additional stopwords increased the coverage of
all (unique) terms by 1,4%, but increased the size of the list by nearly 20% (+85 terms).
This clearly shows the effect that including more terms in the stoplist at a certain size only
increases the number of terms matched in the corpus marginally. The final distribution of
stopword categories is shown in Figure 4.17, where a preceding F stands for functional, CR
for content-related, and DS for domain-specific stopwords.

4.6.7 Coverage of the Generated Stopword List

Compared to other stopword lists the generated list seems to be well sized. As the stopwords
in this work are generated from the INEX computer science corpus, a number of common
terms such as did, once, or upon occurred quite infrequent and are not included. This problem
can be handled by applying the same procedure of stopword generation to other corpora
of other domains. By merging the results (besides the domain-specific stopwords), a more

108 4 Natural Language Text Representation

Table 4.15: List of additional stopwords
Suffix Type Terms

ADV -ly CR (42)

actually, approximately, clearly, closely, completely, currently,
directly, easily, especially, exactly, explicitly, extremely,
Finally, frequently, fully, generally, highly, immediately,
increasingly, independently, likely, necessarily, particularly,
possibly, previously, primarily, probably, quickly, recently,
relatively, respectively, significantly, Similarly, simply,
simultaneously, slightly, specifically, successfully, typically,
Unfortunately, usually, widely

ADV -ly DS (3) automatically, effectively, efficiently
AUX -ing F (2) having, doing

V -ing CR (32)

according, adding, allowing, applying, beginning, being, building,
changing, considering, containing, corresponding, creating,
depending, existing, finding, following, including, increasing,
interesting, leading, making, providing, reducing, remaining,
resulting, starting, taking, underlying, understanding, using,
Using, working

V -ing DS (14)
computing, Computing, developing, engineering, Engineering,
modeling, operating, performing, processing, Processing,
programming, representing, running, testing

V -ed CR (36)

achieved, added, applied, associated, based, Based, called,
compared, considered, created, derived, described, detailed,
determined, discussed, expected, fixed, improved, included,
increased, introduced, involved, limited, needed, obtained,
organized, presented, proposed, provided, published, received,
reduced, related, required, selected, used

V -ed DS (12)
developed, defined, designed, distributed, implemented, supported,
performed, generated, represented, extended, integrated, specified

complete stopword list could be achieved. A final intersection of all terms might be regarded
as real-world ‘common’ stopwords.

An evaluation of the generated stopword list is performed by a coverage test comparing
several other stopword lists. Therefore, nine freely available stoplists are compared to
it. The stopwords presented by Fox in [76] (Fox), three standard stoplists (SL1, SL2, SL3,
unfortunately without sources), the assumed Google stopwords3 (Google), the stopwords
presented by Manning in [173] (Manning), the BioPD stopwords4 from the freeWAIS-sf5

(BioPD), the Glasgow stopwords from The Information Retrieval Group6 (Glasgow), and the
CLEF stopwords from Smart7 (CLEF Smart) were selected.

As said before, a more complete stopword list could be achieved by merging the stopwords
generated from other corpora. Because of limited time, this step is not conducted in this work.
Instead, the nine stopword lists mentioned are analyzed in detail and valid stopwords are

3http://www.ranks.nl/tools/stopwords.html (11.03.2008)
4http://www-fog.bio.unipd.it/waishelp/stoplist.html (11.03.2008)
5http://www.is.informatik.uni-duisburg.de/projects/freeWAIS-sf/STOPWORDS (11.03.2008)
6http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words (11.03.2008)
7http://www.unine.ch/info/clef/englishST.txt (11.03.2008)

4

4.6 Stopword Filtering 109

8779156

3951446

9370597

2996848
2545394

3426610

1962908

1272090
1474832 1634464

2369082

3096697
3322177

1029411

9,5% 4,3% 10,1% 3,2% 2,7% 3,7% 2,1% 1,4% 1,6% 1,8% 2,6% 3,3% 0,0% 0,1% 3,6% 1,1%

11433923165

0

2000000

4000000

6000000

8000000

10000000

F_D
ET

F_A
UX

F_P
REP

F_P
RON

F_P
ART

F_C
ONN

F_L
OG_O

P
F_Q

CR_A
DV

CR_A
DJ

CR_N
CR_V

DS_A
DV

DS_A
DJ

DS_N
DS_V

Category

Te
rm

 fr
eq

ue
nc

y

Figure 4.17: Frequency distribution of all linguistic stopword categories

extracted. According to their linguistic category, these stopwords are assigned to either the
functional F or the content-related C stopword layer. This is explained by the fact that all
stoplists are meant to be ‘common sense’. Table 4.16 summarizes the additional stopwords
added from the external stopword lists. The final generated stopword list contains 804 unique
terms and is attached in Section A.1 in the Appendix.

Figure 4.18 shows the overlap of the generated list and other stopword lists. In this figure
stopwords are sorted in alphabetical order, where the number at the top of each column #SW
is the number of contained stopwords, and the number in the column headers shows the
actual size of the list. One has to note that most stopword lists comprise all single letters and
terms with apostrophes, hyphens, and other special characters. In the experiments such terms
have been excluded by utilizing the token types assigned through Extended Tokenization.
In order to achieve more accurate comparison results, stopwords of other lists that contain
apostrophes (e.g., aren’t, it’s, they’ve) are removed. The stopword coverage of the final stoplist
is above 77% for all lists: Fox (77,4%), SL1 (77,0%), SL2 (85,6%), SL3 (80,5%), Google (83,3%),
Manning (98,2%), BioPD (88,0%), Glasgow (90,0%), and CLEF Smart (80,6%).

After stopwords are filtered the remaining set of index terms is undergoing a stemming
process, described in the next subsection.

110 4 Natural Language Text Representation

Table 4.16: Additional stopwords of external stopword lists
Category Terms
F_AUX (6) am, became, becoming, did, ought, shall

F_PREP (17)
against, amongst, aside, beforehand, behind, below, beside, beyond, down, near,
off, onto, outside, thru, toward, towards, unto, upon

F_PRON (49)

anybody, anyhow, anyone, anything, anyway, anywhere, elsewhere, everybody,
everyone, everything, everywhere, her, hers, herself, him, himself, i, me, mine,
my, myself, nobody, none, noone, nowhere, ours, ourselves, she, somebody,
somehow, someone, something, sometime, somewhat, somewhere, theirs, themselves,
whence, whither, whoever, whom, whomever, why, you, your, yours, yourself,
yourselves

F_PART (5) almost, amongst, down, off, quite, yes

F_CONN (17)
furthermore, hence, howbeit, insofar, neither, nonetheless, nor, thence, though,
unless, whenever, whereafter, whereas, whereby, wherein, whereupon, wherever

F_Q (25)
billion, eight, eighty, eleven, fifteen, fifth, fifty, forty, million, nine,
ninety, secondly, sixty, seven, seventy, six, ten, third, thirty, thousand,
trillion, twelve, twenty, twice, zero

C_ADV (71)

accordingly, actually, afterwards, again, apart, away, awfully, besides,
certainly, clearly, consequently, definitely, differently, downwards, else,
entirely, evenly, ever, formerly, hardly, hereafter, hereby, herein, hereupon,
hither, hopefully, inasmuch, indeed, inward, lately, latterly, mainly,
meanwhile, merely, moreover, mostly, namely, nearly, never, nevertheless, non,
normally, nothing, nowhere, obviously, otherwise, overall, perhaps, preferably,
presumably, really, reasonably, seriously, sometimes, soon, sure, thereafter,
thereby, therein, thereof, thereto, thereupon, thorough, thoroughly, throughout,
today, truly, unfortunately, unlikely, whatever

C_ADJ (41)

alone, big, brief, clear, early, except, former, forth, great, greater,
greatest, highest, immediate, inner, kind, largely, latest, latter, longer,
longest, main, mean, near, newer, newest, novel, old, older, oldest, regardless,
sensible, serious, smallest, sorry, suitable, thick, thin, whole, young,
younger, youngest

C_N (2) ones, regards

C_V (52)

began, came, come, contain, differ, gave, gets, getting, go, goes, going, gone,
got, gotten, interested, keep, keeps, kept, knew, knows, less, lets, liked,
liked, likes, maybe, needing, okay, preferred, presenting, presents, put, puts,
regarding, seeing, seem, seemed, seeming, seems, self, specify, specifying, sub,
taken, took, unlike, want, wanted, wanting, wants, went, worked

4.7 Stemming

Stemming is one of the simplest and most successful methods of natural language processing
for information retrieval [58]. Early work done by Lovins goes back to 1968 [165], already
pointing out the benefits of applying stemming in information retrieval. Today, stemming has
become a widely accepted processing step in nearly all retrieval systems.

Stemming itself is the process of reducing a full word form to its stem. Although quite
similar to morphological processing, it is not linguistically motivated but has somewhat
different goals [58]. It refers to a normalization of terms by removing affixes (prefixes and
suffixes) [110, pp. 140], which is done mainly for two reasons:

4

4.7 Stemming 111

SW 423

Rank CLEF Smart

525
1 a A a a I a a a a
2 about B about able a also about about able
3 above C above about about an above above about
4 across D accordingly above an and according across above
5 after E across according are as across after according
6 again F after accordingly as at actually afterwards accordingly
7 against G afterwards across at be adj again across
8 all H again actually be but after against actually
9 almost I against after by by afterwards all after

10 alone J all afterwards com can again almost afterwards
11 along K allows again de could against alone again
12 already L almost against en do all along against
13 also M alone all for for almost already all
14 although N along allow from from alone also allow
15 always O already allows how go along although allows
16 among P also almost in have already always almost
17 an Q although alone is he also am alone
18 and R always along it her although among along
19 another S am already la here always amongst already
20 any T among also of his among amoungst also
21 anybody U amongst although on how amongst amount although
22 anyone V an always or i an an always
23 anything W and am that if and and am
24 anywhere Y another among the in another another among
25 are a any amongst this into any any amongst
26 area about anybody an to it anyhow anyhow an
27 areas above anyhow and was its anyone anyone and
28 around accordance anyone another what my anything anything another
29 as according anything any when of anywhere anyway any
30 ask across anywhere anybody where on are anywhere anybody
31 asked after apart anyhow who or around are anyhow

326 349 376 421 30 56 293 287

Google Manning Bio PD GlasgowFox SL 1 SL 2 SL 3

421 453 439 523 36 57 333 319

Figure 4.18: Final stopword coverage

� First, the vocabulary is kept as small as possible. For instance, the terms hunt, hunts,
and hunted are reduced to the single form hunt.

� Second, the recall of search results is increased by retrieving identical stems of words
having different spellings as complete words (e.g., another tempus, singular versus
plural, comparative forms). Thus, the term house matches the terms housing, housed,
houses, etc.

Besides these benefits, retrieval systems that apply stemming face some drawbacks [173,
pp. 132–134]. Generally, stemmers like the Porter stemmer [203] reduce word forms by
simply stripping their suffixes. This method works fine for most English words. However,
such processing also leads to unwanted and even incorrect results. For instance, the rule
deleting the word ending -ly reducing adverbs to adjectives but also reduces July to Ju. The
reason for that is that the stem is computed without any deeper linguistic knowledge and
analysis. In other languages with rich morphology (e.g., German) these stemmers perform
very poor. Krovetz and Croft [159, 158] tried to tackle this problem using large dictionaries
to ensure correct stems. However, complete lists are not likely to be available because of the
maintenance costs. Another difficulty is that semantically different words (e.g., gallery and
gall) are both stemmed to gall, leading to unwanted matches of terms in the query and in

112 4 Natural Language Text Representation

the documents. This is the reason why some web search engines do not apply stemming at
all [21, pp. 168].

Generally, stemmers reduce terms to stems by accessing a list of suffixes that are stripped.
The suffixes are sorted according to their length, where longer suffix matches are stripped
before shorter ones. This ensures that the example rules in Equation 4.12 and Equation 4.13
reduce the term stresses to stress (and not to stresse).

sses → ss (4.12)

s → ∅ (4.13)

Besides its advantages according to the vocabulary size, the reason for applying stemming
is its performance and deterministic behavior, mostly implemented as finite state automata.
Although it often reduces full forms very poorly, it does not greatly impact the retrieval result
because both, the query and the content of documents are stemmed: the same error during
indexing is done for the query, which still results in a match of both wrongly stemmed terms.

The stems serve as index terms for the textual representation. In a final step the frequencies
of the stems are summed up in order to reflect the importance of each ‘concept’. During
retrieval, these frequencies are used to compute each stems’ weight for comparison.

4.8 Summary

This chapter introduced the relevant aspects of transforming natural language text into a
computable representation that is comparable to others. Therefore, the involved natural
language processing steps are described and the processing chain is explained.

The steps include tokenization, tagging, stemming, and stopword filtering. The final
processing result is a term frequency vector that reflects the stemmed terms and their
frequency within the initial text. The generated representation is stored in the database
accessible during later retrieval phases.

5

Chapter 5 The voyage of discovery is not in seeking new landscapes but in
having new eyes.

Marcel Proust

Generation of Natural Language Resources

Supporting Information Retrieval

Natural language resources consist of dictionaries and sets of language rules that improve
the quality of text analysis, and thus, the quality of text representations. Incorporating them
in retrieval systems increases both, computational performance and retrieval quality. This
chapter presents statistical methods that extract natural language resources from a large set
of documents automatically. Processing solely relies on the computationally light-weight
tasks of Extended Tokenization (described in Section 4.4) and stopword filtering (described in
Section 4.6). Resources generated include a set of single-token typing rules and a set of multi-
token typing rules improving tokenization, a full form dictionary, an abbreviation dictionary,
multi-term dictionaries for the identification of index phrases (composite nouns, named
entities, and formulaic speech), and acronym dictionaries for detection and re-substitution of
acronyms and full forms.

5.1 Introduction

Extended Tokenization, as discussed in Section 4.4, is applied in natural language processing
mainly for index and query computation. Obviously, the quality of retrieval systems strongly
relies on the quality of its index representation and on the way the query is analyzed and
processed. Incorporating the generated resources in text analysis frameworks improves
central linguistic tasks such as tagging, parsing, term extraction and filtering, named entity
recognition, etc. The better the natural language analysis, the better the representation of
textual contents. As a consequence, improvements of natural language text representation
improves the quality of information retrieval tasks.

The performance of natural language processing tools depends on the underlying re-
sources like dictionaries and knowledge bases (e.g., morphological and syntactical rules).
Creating these resources is time and cost expensive, which often is the reason for trusting

113

114 5 Generation of Natural Language Resources Supporting Information Retrieval

external sources that are freely available. Due to the high creation effort, these resources are
generally tailored to certain domains and applications. Thus, different sources use different
terminologies, data structures, and implicit or ambiguous semantics to describe the same
concepts. Quality assessments of resources are carried out rarely. Only in few cases external
resources can be applied as given, and often much efforts are needed to rework and adapt
them.

In general, tokenizers preprocess texts for further analysis tasks. However, the output of a
sophisticated tokenizer can also be applied to generate lists of abbreviations, acronyms, named
entities, full word forms (dictionaries), and domain and application specific text patterns in
an unsupervised way. Since tokenization is a light-weight process, large amounts of data can
be processed efficiently. Without much effort, experts are able to filter well prepared lists and
extract information in a convenient way. This section relies on the output of JavaTok – the
Extended Tokenization prototype. Neither stemming nor stopword filtering, as described in
the previous chapter, have been applied. The output of the tokenizer is exploited to serve
information extraction and text mining tasks. Based on a large amount of example texts,
domain- and application-specific resources are created in a cheap, fast, and simple way with
minimal human intervention.

Figure 5.1 shows the three components that generate linguistic resources from large
amounts of plain text. It is important to note that this process starts from scratch, not relying
on any of the representations computed earlier. In a first step, JavaTok is applied to tokenize
each text. Its output is passed to a Pattern Extractor that identifies and extracts predefined
token sequences (patterns) of length b. For each pattern, the extraction process includes
a left (pre-window of length a) and a right (post-window of length c) context of tokens.
Identified patterns (b tokens) are sorted according to their frequency in descending order.
Corresponding full windows of a + b + c tokens (pre-window, pattern, post-window) are
additionally stored and sorted the same way. In a final step a Rule Miner analyzes the
extracted full windows of each pattern. Based on statistics, rules are proposed that identify
the current pattern according to its context. Rules are sorted by their length (number of
tokens addressed) and ranked according to the proportion of full window matches.

The machinery depicted in Figure 5.1 is used to extract language resources that improve
information retrieval. Relying on corpus-based statistics (e.g., pattern frequency, document
frequency), it is demonstrated how resources can be generated efficiently from large text
corpora with minimal manual effort. The resources include:

Single-token rules Focusing on single-tokens of unknown type, rules that identify single-
token types are incrementally added. These basic token-types enable subsequent
extraction of more elaborated resources.

5

5.1 Introduction 115

JavaTok

Text 1

Text n

.

.

.

Pattern
Extractor

Rule
Miner

.

.

.

t1,1 t1,2 t1,3

tn,1 tn,2 tn,3

t1,i t1,i+b+1 t1,i+b+ct1,i-a t1,i-1...

t1,x-1

tn,y-1

t1,i+b

pre-window
of length a

post-window
of length c

pattern
of length b

.

.

.

... ...

t1,x

tn,y

...

...

t1,j t1,j+b+1 t1,j+b+ct1,j-a t1,j-1... t1,j+b... ...

tn,k tn,k+b+1 tn,k+b+ctn,k-a tn,k-1... tn,k+i+b
.
.
.

... ...

tn,l tn,l+b+1 tn,l+b+ctn,l-a tn,l-1... tn,l+b... ...

t1,x-2

tn,y-2

.

.

.

pre rules

post rules

pre+post rules

pre1(t-1,X) prea(t-a ... t-1,X)

post1(X,t+1) posta(X,t+1 ... t+c)

pre-post1,1(t-1,X,t+1) pre-posta,1(t-a ... t-1,X,t+1)
.
.
.

pre-post1,c(t-1,X,t+1 ... t+c) pre-posta,c(t-a ... t-1,X,t+1 ... t+c)

.

.

.

.

.

.

...

...

...

...

Figure 5.1: Information extraction and text mining tasks

Multi-token rules Identification of complex multi-token rules based on single-tokens (strings
and types) lead to better tokenization results. Especially tagging is improved by glueing
conceptual related single-tokens to higher level multi-tokens.

Rule mining In order to enhance retrieval of sophisticated textual patterns, multi-token rules
are identified automatically. Based on a bootstrapping mechanisms, context rules are
learnt from a few known ‘seed’ patterns. The new rules can be used to extract further
patterns that occur in the same context.

Single-term dictionaries Single-term dictionaries refer to traditional term lists, including
full form lexicons, lists of abbreviations that improve the reliability of sentence border
disambiguation, domain-dependent acronyms, URIs, phone numbers, and special
formats (e.g., hyphenated forms such as rule-based, state-of-the-art). Extraction of
specific word category dictionaries is done by focusing on token types applying regular
expression matching of token strings (e.g., -ly ending adverbs, -ion and -ings ending
nouns, -ing and -ed ending verbs).

Multi-term dictionaries Multi-term dictionaries consist of multi-tokens that serve as addi-
tional multi-term or phrase indices. These indices improve retrieval tasks by representing
concepts where the order of words is significant (e.g., composite nouns, named entities,
expanded acronyms).

The next section describes the general procedure of the extraction tasks. Subsequently, the
different approaches generating natural language resources are presented.

116 5 Generation of Natural Language Resources Supporting Information Retrieval

5.2 Experimental Setting and Procedure

All experiments rely on English computer science texts of the INEX 2005 corpus described in
Section 2.9.1. However, the proposed extraction methods can be applied to other languages
and domains in the same manner. Achieved results are meant as guidelines, sketching ways
to smartly extract linguistic resources on a surprisingly low processing level. The resources
are generated and extended in an iterative process using JavaTok and a Pattern Extractor.
Both tools are complemented by a Rule Miner that identifies statistically motivated rules
based on the contexts of extracted patterns (see Figure 5.1).

In each iteration step the set of documents is tokenized using JavaTok. The output is passed
to the Pattern Extractor which extracts token patterns and corresponding contexts. Patterns
are defined as an arbitrary number of tokens that are specified by token strings and token
types. Positive (e.g., only tokens of type ABBR) and negative (e.g., no token strings ending by
-ing) pattern definitions are supported. Additionally, a list of known exceptions (negative
token strings; e.g., July is not an adverb although ended by -ly) and a list of known strings
(positive token strings; e.g., wrt. is a known abbreviation) are used to exclude previously
identified patterns. If necessary, a left context (pre-window) and a right context (post-window)
of arbitrary length can be included. The Pattern Extractor outputs the extracted patterns (and
their contexts) according to their frequency in descending order. By investigating the top n
outputs, patterns are efficiently identified and processed. One can either

1. assign the extracted pattern to a list of positive token strings, or
2. assign the extracted pattern to a list of negative token strings, or
3. set up a rule that identifies the pattern as a certain token type, or
4. set up a rule that ignores the pattern in the next iteration step, or
5. leave the pattern untouched.

Adding a pattern to the positive list (option 1) results in a dictionary of highly confident
patterns. This dictionary is supported by positive rules that identify the pattern (option 3).
The effect of a new rule can instantly be checked by extracting all tokens assigned to the
new rules’ token type. Similarly, options (2) and (4) exclude unwanted patterns. Each option
(1)–(4) prevents the pattern from being extracted in subsequent iteration steps. Due to the
iterative process, both, the lists (positive and negative token strings), and tokenization rules
(positive and negative), grow quickly. Thus, the number of patterns investigated in the next
iteration step is reduced efficiently. In addition to the manual identification of positive rules
the Rule Miner can be applied to extract rule proposals. Statistical ranking of these rules
supports the rule identification process.

5

5.3 Definition of Basic Token Types for Single-Tokens 117

5.3 Definition of Basic Token Types for Single-Tokens

Basic token types provide an abstraction of tokens that classify token strings into a set of
interpretable categories. During Extended Tokenization these types are assigned to tokens in
an initial step. Although token types are not interpreted by the tokenizer itself, subsequent
processing, as described in this chapter, is supported by focusing on certain subsets of tokens.

Relying on the output of the Pattern Extractor, basic token types are identified manually.
Therefore, single-tokens of unknown type (Tu) are investigated. Types are assigned by regular
expression rules that are applied on token strings. According to the single-tokens extracted,
three main categories, alphabetic (ALPHA), numeric (NUMERIC), and special (ENTITY)
tokens are distinguished. Each category consists of further subcategories (see Figure 4.4).
Within a short time of several hours a set of 72 basic token typing rules is constructed (see
Tables 5.1–5.7). In the sequel the rules of each category are described.

5.3.1 Alphabetic Tokens (ALPHA)

Alphabetic tokens refer to ‘proper words’ of a text. Generally, search engines rely on these
terms as index terms. Interestingly, a wide variety of different types occur frequently through-
out the INEX documents. For the sake of improving postprocessing tasks, 49 specialized
identification rules are identified and organized in three subcategories. COMMON alphabetic
tokens refer to full form words (see Table 5.1). The alphabetic subcategory ACRONYM marks
acronyms of various forms (see Table 5.2). Specially formatted tokens still referring to words
are typed as SPECIAL alphabetic tokens (see Table 5.3). The number in the table headers
counts the number of rules included.

118 5 Generation of Natural Language Resources Supporting Information Retrieval

Table 5.1: COMMON alphabetic token types (26)
Subcategory Regular Expression Example
LOWER [a-z]+ this, house, it
UPPER [A-Z][a-z]+ Vienna, Bill, Table
UPPER_NUMBER [A-Z][a-z]+[0-9]+ Win32

ELECTRONICAL_OBJECT_1 [eE](-[A-Z]?|[A-Z])[a-z]+ e-Commerce, e-mail, eBay
ELECTRONICAL_OBJECT_2 i(-[A-Z]?|[A-Z])[a-z]+ iPod, i-Pod, i-pod
MIXED ([a-z]+[A-Z]+[a-zA-Z]*|[A-Z]+[a-z]+[A-Z]+[a-zA-Z]*) thiS, HoUsE, iT

HYPHEN_1 [a-z]+-[a-z]+ red-hat
HYPHEN_2 [a-z]+-[a-z]+(-[a-z]+)+ state-of-the-art
HYPHEN_3 [a-z]+-[0-9]+ mid-1990
HYPHEN_4 [A-Z]+-[a-z]+ NP-hard
HYPHEN_5 [A-Z]+-[A-Z][a-z]+ NP-Complete
HYPHEN_6 [A-Z]-[A-Z]?[a-z]+ B-Spline, A-test
HYPHEN_7 [A-Z][a-z]+-[A-Z][a-z]+ Master-Mind, New-York
HYPHEN_8 [A-Z][a-z]+-[a-z]+ Master-switch
HYPHEN_9 [A-Z][a-z]+-[A-Z][a-z]+(-[A-Z][a-z]+)+ Master-Editor-Chief
HYPHEN_10 [A-Z]?[a-z]+-[A-Z]?[a-z]+(-[A-Z]?[a-z]+)+ Editor-in-Advance
HYPHEN_3_PLURAL [a-z]+-[0-9]+s mid-1990s
HYPHEN_PREFIX [A-Z]?[a-z]+- Pre-, post-
HYPHEN_POSTFIX -[a-z]+ -ness

CONTRACTION_IS_HAS ([Tt]hat’s|[Tt]here’s|[Hh]e’s|[Ss]he’s|[Ii]t’s) It’s, That’s, he’s
CONTRACTION_HAD_WOULD ([A-Z]?[a-z]+|I)’d he’d, They’d, We’d
CONTRACTION_CLITICS (I|[A-Z]?[a-z]+)’(ve|ll|re|m|t) I’m, They’ve, We’re

APOSTROPHE_POSS_GEN_1 [a-z]+’s egg’s
APOSTROPHE_POSS_GEN_2 [A-Z][a-z]+’s Million’s, Dude’s
APOSTROPHE_POSS_GEN_3 [a-z]+-[0-9]+’s mid-1990’s
APOSTROPHE_POSS_GEN_4 ([a-z]+[A-Z]+[a-zA-Z]*|[A-Z]+[a-z]+[A-Z]+[a-zA-Z]*)’s tHaT’s, McDonald’s

Table 5.2: ACRONYM alphabetic token types (15)
Subcategory Regular Expression Example
SIMPLE [A-Z][A-Z]+ USA, ACM, IEEE
NUMBER_FIRST [0-9]+[A-Z]+ 3D, 123US
SLASH [A-Z]+(/[A-Z]+)+ IEEE/ACM
AND [A-Z]+&[A-Z]+ AT&T, ABC&DEFG, A&PC
SLASH_NUMBER [A-Z]+/[0-9]+ PS/2, RS/6000
MIXED_NUMBER [A-Z]+[0-9]+[A-Z]* P2P, J2EE

PLURAL_1 [A-Z]+s PCs, CPUs, XMLs
PLURAL_2 [A-Z]+/[A-Z]+s I/Os, DA/Ps
PLURAL_3 [A-Z]+-[A-Z]+s ACM-IEEEs, SP-SSs

NAME [A-Z]\.-?([A-Z]\.)+ E.G.T., M.-T., A.B.-C.D.

HYPHEN_1 [A-Z]+-[A-Z]+ ACM-IEEE, SP-SS
HYPHEN_2 [A-Z]+-[A-Z]+(-[A-Z]+)+ IF-THEN-ELSE
HYPHEN_NUMBER [A-Z]+-[0-9]+ F-117, B-52, US-123

APOSTROPHE_POSS_GEN [A-Z]+’s USA’s, ACM’s

MIXED(ALPHA_MIXED) [A-Z][A-Z]+[a-z]+ IPsec, ITtalks, KBytes

5

5.3 Definition of Basic Token Types for Single-Tokens 119

Table 5.3: SPECIAL alphabetic token types (8)
Subcategory Regular Expression Example
APOSTROPHE_NAME (O|Mc|De)’[A-Z][a-z]+ O’Conner, Mc’Donalds
APOSTROPHE_NAME_POSS_GEN (O|Mc|De)’[A-Z][a-z]+’s O’Conner’s, Mc’Donalds’s
APOSTROPHE_GENERAL [A-Z]?[a-z]*’[A-Z]?[a-z]+ Int’l

ALTERNATIVE_1 [a-z]+(/[a-z]+)+ input/output
ALTERNATIVE_2 [A-Z][a-z]+(/[A-Z][a-z]+)+ May/June

ALTERNATIVE_3 [A-Z]?[a-z]+\.(/[A-Z]?[a-z]+)̇+ Jan./Feb.

SLASH_NAME [A-Z][a-z]+/[0-9]+ System/6000, Ansi/200
UNDERLINE_COMPOUND [A-Z]?[a-z]+(_[A-Z]?[a-z]+)+ By_the_End

5.3.2 Numeric Tokens (NUMERIC)

Numeric tokens identify numbers and number-like strings which generally are not included
in the set of index terms. Three different subtypes of numeric tokens are defined: plain
numbers (PLAIN, see Table 5.4), formats that contain numbers (FORMAT, see Table 5.5),
and special number constructs (SPECIAL, see Table 5.6).

Table 5.4: PLAIN numeric token types (6)
Subcategory Regular Expression Example
SIMPLE [0-9]+ 12345
SIMPLE_SIGNED [\+-][0-9]+ +512, -18
PERIOD [0-9]+(\.[0-9]+)+ 123.45
COMMA [0-9]+(,[0-9]+)+ 123,45
PLURAL [0-9]+s 1990s, 60s
APOSTROPHE_POSS_GEN [0-9]+’s 1990’s

Table 5.5: FORMAT numeric token types (13)
Subcategory Regular Expression Example
PERIOD_CHAPTER [0-9]+\.[0-9]+(\.[0-9]+)+ 3.2.1
VERSION [0-9]+([\.-][0-9]+)+[[A-Za-z]+] 3.2.1-5alpha, 0.3.2-1, 0-4-3

RANGE [0-9]+–?[0-9]+ 25-28, 11-17
TIME_SCORE_PROPORTION [0-9]+(:[0-9]+)+ 12:45, 10:09:99
SLASH_NUMBER [0-9]+/[0-9]+ 3/4, 1/2, 99/100
CARDINAL [0-9]+(st|nd|rd|th) 1st, 2nd, 15th

PERCENT [0-9]+% 1%, 99%, 127%
DOLLAR_1 [0-9]+$ 123$
DOLLAR_2 \$[0-9]+ $123

DATE_1 (0?[1-9]|1[0-9]|2[0-9]|3[0-1])\.(0?[1-9]|1[0-2])\.[0-9]4 12.12.1977, 1.1.1980
DATE_2 [0-9]4\.(0?[1-9]|1[0-2])\.(0?[1-9]|1[0-9]|2[0-9]|3[0-1]) 1977.12.12, 1980.1.1
DATE_3 (0?[1-9]|1[0-9]|2[0-9]|3[0-1])/(0?[1-9]|1[0-2])/[0-9]4 12/12/1977, 1/1/1980
DATE_4 [0-9]4/(0?[1-9]|1[0-2])/(0?[1-9]|1[0-9]|2[0-9]|3[0-1]) 1977/12/12, 1980/1/1

120 5 Generation of Natural Language Resources Supporting Information Retrieval

Table 5.6: SPECIAL numeric token types (1)
Subcategory Regular Expression Example
MEASSURE [0-9]+-[a-z]+ 128-bit, 64-inch, 84-kg

5.3.3 Entity Tokens (ENTITY)

Special token types describe application and domain specific token strings. Since the INEX
corpus consists of computer science texts, a subtype WWW for web-related tokens is defined
(see Table 5.7).

Table 5.7: WWW Entity Token Types (3)
Subcategory Regular Expression Example
EMAIL [0-9a-zA-Z]([-\.0-9a-zA-Z])*@([0-9a-zA-Z][-a-zA-Z]*[0-9a-zA-Z]\.)+[a-zA-Z]2,9 abc.def@xml.org
URL (http|ftp|https)://([0-9a-zA-Z])+(\.([0-9a-zA-Z])+)+(/([0-9a-zA-Z])*)+ http://hekkas.com
FILE_EXT \.[a-zA-Z][a-zA-Z][a-zA-Z] .txt, .GIF, .Pdf

5.4 Definition of Complex Token Types for Multi-Tokens

Sequences of token strings and basic token types can be further exploited to define more
elaborated multi-token types. Therefore, rules that combine, split, and retype single-tokens to
create multi-tokens are applied. Promising candidates consisting of multiple tokens include
phone numbers (see Table 4.4), named entities, and special writing formats (e.g., credit card
numbers, product identifiers). Note that some patterns (e.g., phone numbers like +43 (0)463

2700-3511) are identified context independently, whereas others must include their textual
surrounding (left and/or right contexts). This section focuses on context independent pattern
identification.

An example of a multi-token rule is given in Listing 5.1. Each rule consists of an ID (line
2), a flag that specifies whether delimiter tokens have to be considered in the token input
sequence (line 3), an input sequence of tokens defined through string and type specifications
using regular expressions (lines 4–17), an output sequence of (re)typed tokens eventually
creating multi-tokens, and an optional description. A string manipulation language was
developed to address strings and types of input tokens. For instance, S0 (resp. T0) refers to
the token string S (resp. type T) of the first input token 0. Additional commands allow the
extraction and recombination of substrings (e.g., cuttail("aabcc",2) results in the string
aab, cuthead("aabcc",3) results in the string cc).

Rule examples identifying multi-tokens in the INEX corpus:

R-1 Rule that corrects wrong end of sentence tokens (see Listing 5.1);
e.g., int + END_OF_SENTENCE + companies→ int. companies

5

5.4 Definition of Complex Token Types for Multi-Tokens 121

Listing 5.1: Example rule correcting sentence ends
� �

1 <RULE>
2 <ID>R-EOS-001</ID>
3 <IGNORE_DELIMS>true</IGNORE_DELIMS>
4 <IN>
5 <TOKEN>
6 <STRING>.*</STRING>
7 <TYPE>^[(TT_PM)]</TYPE>
8 </TOKEN>
9 <TOKEN>

10 <STRING>\.</STRING>
11 <TYPE>TT_EOS</TYPE>
12 </TOKEN>
13 <TOKEN>
14 <STRING>.*</STRING>
15 <TYPE>ALPHA_COMMON_LOWER</TYPE>
16 </TOKEN>
17 </IN>
18 <OUT>
19 <TOKEN>
20 <STRING>$S0$.</STRING>
21 <TYPE>ABBREV_CAND</TYPE>
22 </TOKEN>
23 <TOKEN>
24 <STRING>$S2$</STRING>
25 <TYPE>$T2$</TYPE>
26 </TOKEN>
27 </OUT>
28 <DESCRIPTION>
29 Rule that re-concatenates a period to the previous token if it is followed
30 by a non-capitalized alphabetic token. This rule corrects wrong sentence ends
31 and marks abbreviation candidates, eventually handled by subsequent rules.
32 </DESCRIPTION>
33 </RULE>
� �

R-2 Rule that re-concatenates hyphenated words at line breaks;
e.g., auto- + END_OF_LINE + matically→ automatically

R-3 Rule that splits clitics and expands it;
e.g., isn’t→ is + not

R-4 Rule that identifies international phone numbers;
e.g., +43 + (0)463 + 2700 + - + 3504→ +43 (0)463 2700-3504

The rules described identify patterns directly. This means that a pattern, optionally with
its context(s), is specified by an expert. This allows an identification of known patterns from
a text. With respect to information retrieval, the set of multi-terms identified defines the

122 5 Generation of Natural Language Resources Supporting Information Retrieval

term space for content representation. In X-DOSE, this procedure identifies multi-terms that
represent the multi-term contents.

However, there is the possibility to identify unknown multi-terms indirectly by specifying
the context surrounding them. In these rules the multi-term itself is replaced by a wildcard.
Using the Pattern Extractor to extract these context patterns, texts are mined for additional
multi-terms that occur in the same context. Thus, the term space can be extended automatically
based on context analysis of few known patterns by a bootstrapping-like mechanism. For
instance, a small number of country names (e.g., Austria, Chile) generates a set of rules that
identify countries in certain contexts (e.g., president of [country]). In a second step these
rules are applied to identify unknown country names in the same context. The next section
describes a statistical approach identifying rules automatically.

5.5 Automatic Rule Extraction

The identification of complex domain-dependent and application-specific tokenization rules is
hard and time consuming even for experts. Thus, approaches that solve this task automatically
are of importance. For this purpose, a Rule Miner is proposed that computes statistically-
motivated tokenization rules based on extracted patterns and contexts. Single-token patterns
assumed to form multi-tokens (e.g., signed numbers like +43) are extracted with left and right
contexts. The Rule Miner analyzes the contexts and generates rules that identify the specified
pattern. It is important to note that the size of the context investigated has a major impact
on the computational performance, since token strings, token types, and combinations of
both are considered for rule generation. Strict matching of strings and types is considered
only. However, more elaborated matching (e.g., same super token type ALPHA, regular
expressions that match token strings ended by -ly) seems promising.

Two experiments generating multi-token rules illustrate the usage of the Rule Miner. In a
first experiment, plain number contexts with left and right window sizes of one token are
analyzed. Table 5.8 shows the top ranked outputs for left, right, and both contexts included.
S resp. T stands for a match of the token string resp. token type. The last column contains
the percentage of contexts that are matched by the rule (out of 1.652.285 extracted patterns).

As expected, the percentage of matching contexts drops quickly. Especially larger contexts
(left and right context) occur less frequent than shorter ones (either left or right context). Ac-
cording to a threshold (i.e., 10%), only a small fraction of extracted rules has to be investigated.
Based on the top four results presented in Table 5.8c, the rule [+ NUM_PLAIN_SIMPLE
+] that matches citations (e.g., [3], [42]) is identified. Note that the token type TT_PM
for punctuation marks includes the characters [and]. The final list of rules that treat plain
numbers contains:

5

5.5 Automatic Rule Extraction 123

Table 5.8: Top 10 context rules for plain numbers

(a) Left context

ID Left context %
1 T = TT_PM 37,0%
2 T = ALPHA_COMMON_LOWER 21,2%
3 S = [16,1%
4 T = ALPHA_COMMON_UPPER 14,3%
5 S =, 13,2%
6 T = TT_UNKNOWN 10,2%
7 T = ABBR 9,9%
8 S = Fig. 5,4%
9 S = (5,1%

10 T = TT_EOS 3,6%

(b) Right context

ID Right context %
1 T = TT_PM 53,5%
2 S =, 24,7%
3 T = ALPHA_COMMON_LOWER 24,4%
4 S =] 16,1%
5 S =) 9,4%
6 T = TT_EOS 9,0%
7 S = . 8,3%
8 T = TT_UNKNOWN 5,4%
9 T = ALPHA_COMMON_UPPER 4,2%

10 S = and 2,8%

(c) Both contexts

ID Left context Right context %
1 T = TT_PM T = TT_PM 31,7%
2 S = [T = TT_PM 16,0%
3 T = TT_PM S =] 15,9%
4 S = [S =] 15,8%
5 T = ALPHA_COMMON_LOWER T = ALPHA_COMMON_LOWER 10,9%
6 T = TT_PM S =, 10,1%
7 S =, T = TT_PM 10,1%
8 S =, S =, 8,9%
9 T = ALPHA_COMMON_UPPER T = ALPHA_COMMON_LOWER 5,6%

10 T = ALPHA_COMMON_UPPER T = TT_PM 5,5%

Cross references (Table 5.8a) Numbers preceded by Fig. (5,4%), Figure (2,5%),
Section (1,6%), Table (1,4%), Step (0,5%), Theorem (0,4%), Lemma (0,3%);
e.g., Section 4, Fig. 2, Step 5

Month dates (Table 5.8a) Numbers preceded by June (0,6%), May (0,6%), July (0,4%),
Aug. (0,4%), Oct. (0,4%), Sept. (0,4%), Dec. (0,4%), Jan. (0,4%), Apr. (0,4%),
Mar. (0,4%), Nov. (0,4%), Feb. (0,3%);
e.g., May 24, Aug. 3

Quantities (Table 5.8b) Numbers followed by percent (1,4%), years (0,3%), bits (0,2%),
million (0,1%), times (0,1%), MHz (0,1%), Mbytes (0,1%);
e.g., 43 percent, 2 years, 5 times

Citations (Table 5.8c) Numbers embraced by square brackets (15,8%);
e.g., [2], [41], [111]

A second experiment focuses on the identification of international phone numbers. Preced-
ing country code patterns (e.g., ++43, +39) are exploited to identify possible candidates. A left
context of one token and a right context of five tokens are included in the analysis. The top ten

124 5 Generation of Natural Language Resources Supporting Information Retrieval

results are presented in Table 5.9. As before, S resp. T denotes token strings resp. token types,
and the last column is the percentage of contexts that match the rule (out of 955 extracted pat-
terns). For better readability the token type NUM stands for NUMERIC_PLAIN_SIMPLE
(plain numbers).

Table 5.9: Top 10 context rules for international country codes

(a) Left context

ID Left context %
1 T = ALPHA_COMMON_LOWER 80,6%
2 S = f ax 37,5%
3 S = phone 25,7%
4 T = TT_PM 15,1%
5 S = voice 12,4%
6 S =: 7,5%
7 S = (6,3%
8 T = TT_EOS 2,6%
9 S =; 2,6%

10 S = to 1,4%

(b) Right context

ID Right context %
1 T = NUM 73,3%
2 T = NUM, T = NUM 64,4%
3 T = NUM, T = NUM, T = NUM 36,5%
4 T = NUM, T = NUM, T = TT_EOS 23,1%
5 T = NUM, T = NUM, S =; 21,5%
6 T = NUM, T = NUM, T = NUM, T = TT_EOS 19,3%
7 T = TT_PM 19,3%
8 T = NUM, T = NUM, T = NUM, S =; 19,0%
9 T = NUM, T = NUM, T = NUM, T = NUM 13,5%

10 T = TT_PM, T = NUM 11,8%

(c) Both contexts

ID Left context Right context %
1 T = ALPHA_COMMON_LOWER T = NUM 66,2%
2 T = ALPHA_COMMON_LOWER T = NUM, T = NUM 57,9%
3 T = ALPHA_COMMON_LOWER T = NUM, T = NUM, T = NUM 32,0%
4 S = f ax T = NUM 31,9%
5 S = f ax T = NUM, T = NUM 27,9%
6 S = phone T = NUM 25,3%
7 S = phone T = NUM, T = NUM 23,9%
8 T = ALPHA_COMMON_LOWER T = NUM, T = NUM, T = TT_EOS 22,2%
9 T = ALPHA_COMMON_LOWER T = NUM, T = NUM, S =; 20,5%

10 T = ALPHA_COMMON_LOWER T = NUM, T = NUM, T = NUM, T = TT_EOS 17,5%

Table 5.9a shows that – in combination – 75,8% of all country code occurrences are preceded
by the words phone, voice, and fax (optionally capitalized). Over 70% of tokens following
country codes are numbers (see Table 5.9b). The experiment confirms the expectation that
phone numbers are easy to identify with high confidence. An investigation of the complete
Rule Miner output confirms that phone numbers are the only meaningful multi-term pattern
in the INEX corpus containing a country code.

Phone numbers (Table 5.9c) International phone number preceded by fax (37,5%),
phone (25,7%), voice (12,4%), telephone/fax (0,1%), Fax (0,1%), Phone (0,1%) and
followed by one (73,3%), two (64,4%), three (36,5%), four (13,5%), or five (4,8%) plain
numbers;
e.g., phone +43 1023 234 32345 12

5

5.6 Generating Single-Term Dictionaries 125

5.6 Generating Single-Term Dictionaries

Single-term dictionaries contain single-tokens that support text analysis and text represen-
tation. Previously assigned token types and additional specifications of token strings are
exploited to generate dictionaries from the corpus automatically. This section demonstrates
the procedure of creating a full form dictionary and an abbreviation dictionary. The same
approach can be applied to generate other domain-specific dictionaries including

� email and internet addresses
� domain-relevant acronyms
� hyphenated word forms (e.g., state-of-the-art, F-117A)
� words containing certain affixes (e.g., noun dictionaries ended by -ion, terms started by

re-)
� domain-specific single-token concepts (e.g., chemical formulas like H2SO4)
� etc.

Creating a Full Form Dictionary

A full form dictionary refers to the set of all ‘regular’ words that occur in the document
collection. The Pattern Extractor selects only single-token strings that consist of alphabetic
lowercase characters, possibly started by a capital letter. These tokens are identified by the
token types ALPHA_COMMON_LOWER and ALPHA_COMMON_UPPER. Both, left and
right contexts are omitted.

The INEX collection consists of 178.677.541 single-tokens including delimiter tokens.
Following the above guidelines and ignoring delimiters, a total number of 92.855.161 single-
tokens is examined. Extracted token strings are converted into lowercase with cumulated term
frequencies. The final list contains 171.580 unique full forms (out of 205.106 upper and lower
case tokens). In this work the full form dictionary is applied for stopword extraction (described
in Section 4.6, first four columns of Table 4.12) and abbreviation detection (described in the
next section).

Creating an Abbreviation Dictionary

Similar to the generation of a full form dictionary, a dictionary of common abbreviations is
extracted from the corpus. JavaTok skips punctuation mark splitting (see Figure 4.7) and the
Pattern Extractor picks token strings ended by periods only. In order to check the correctness
of the extraction, a left and right context of three words is included. Preliminary tests have
shown that this window size is large enough to decide whether a pattern is an abbreviation
or not. Extracted results are ranked according to their frequency in descending order.

126 5 Generation of Natural Language Resources Supporting Information Retrieval

An investigation of the extracted patterns clearly shows that a simple, rule-based abbrevi-
ation detection approach is insufficient. Table 5.10 shows incorrect abbreviations identified
among the top 100-ranked results. The examples are sorted according to their frequency in
descending order.

Table 5.10: Examples of incorrect abbreviation patterns
Urbana-Champaign., MHz., PCs., ’96., ’95., ’97., ’94., 3D., PEs., ’93., ’98., NP-complete,.
e-commerce., ’99., e-mail., ICs., FPGAs., trade-offs., fault-free., ’92., flip-flops., QoS.,
time-consuming., NP-hard., ’91., deadlock-free., CPUs., NP-Completeness., APIs., Jan.-Mar.,
Wisconsin-Madison., 1998;., LANs., run-time., URLs., cost-effective., real-time., trade-off.,
1,000., July-Sept., A.1., ’90., Mar.-Apr., PDAs., Jan.-Feb., 1999;., don’t., GHz., 2D., dB.,
MultiMedia., ?1., ’s., A.2., IPv6.

The generation of an abbreviation dictionary is iterative and demands human intervention
for selection purpose only. The idea is based on the extraction of candidate patterns defined
by token strings ended by a single period. According to Grefenstette and Tapanainen [107], a
large number of non-abbreviations is excluded by using the terms of the corpus itself as a
filter. Since words ended by periods possibly mark ends of sentences, a comparison to all
words occurring within sentences – the full form dictionary created in the previous section –
preserves an extraction.

The process starts with two empty list of abbreviations (positives) and exceptions (nega-
tives), and an empty set of positive identification and negative exclusion rules. By skimming
the top-ranked entries and their contexts, both lists and rule sets grow quickly. Applying
these lists and rules in subsequent iterations, the number of correct abbreviations among the
top-ranked results decreases rapidly. The procedure stops if no meaningful strings or rules
are identified.

In the experiments the top n = 100 extracted entries of the INEX corpus are investigated.
After four iterations 322 corpus-specific abbreviations (see Table 5.11) are generated efficiently.
Abbreviations in the table are sorted alphabetically. The list of exceptions includes the terms
listed in Table 5.10. Positive rules comprise patterns that contain periods within the string
(e.g., w.r.t., i.e., Ph.D., Comp.Sci.). Interestingly, capital letters separated and ended by
periods (e.g., A., E.R., C.P.R.) turned out to be worthless abbreviation patterns because these
decode the first name(s) of persons. In order to avoid this pattern a negative exclusion rule
([A− Z]\.)+ is added.

The extracted abbreviations are integrated in JavaTok for enhancing the sentence end
disambiguation. To cope with the difficulty of incomplete lists, a combined approach of
dictionary lookup and rule-based identification is proposed. A domain- and application-
specific set of abbreviations is kept in a dictionary. If an abbreviation candidate is not found
in the dictionary, the following regular expression rules for identification are applied:

� Abbreviations that are prefixes of full forms: e.g., avail., approx., Technol.

5

5.7 Generating Multi-Term Dictionaries via Concordances 127

Table 5.11: Extracted abbreviations
Acad., Adv., Akad., Amer., Appl., Applic., Apr., Apt., Assn., Assoc., Aug., Automat., Av.,
Ave., B.Eng., B.Sc., B.Tech., BTech., Biol., Biomed., Bld., Blvd., Bv., Calc., Calif., Capt.,
Cdr., Chem., Cir., Co., Col., Comm., Comp., Comp.Sci., Comput., Conf., Conn., Coop., Corp.,
Crit., Ct., Ctr., D.Sc., Dec., Depart., Dept., Depts., Devel., Dipl., Dipl.-Inform.,
Dipl.-Ing., Dipl.-Math., Dipl.Ing., Discr., Dist., Div., Dr-Ing., Dr., Dr.-Ing., Dr.Eng.,
Dr.rer.nat., Drs., Elec., Eng., Engr., Eq., Eqn., Equip., Feb., Fed., Fig., Figs., Fil.,
Fla., Ft., G.v., GmbH., Govt., Hist., Img., Inc., Ind., Inf., Info., Ing., Inst., Instrum.,
Int’l., Int., Intell., Intl., Jan., Jr., Jt., Jul., Jun., Knowl., Lehrst., Lt., Ltd., M.Eng.,
M.Math., M.Phil., M.Sc., MC-Sym., MSc., Mag., Maj., Mar., Md., Mgmt., Mgt., Mr., Mrs., Ms.,
Mt., Multiconf., Nat’l., Natl’l., Nos., Nov., Numer., Oct., Oper., Orthop., Ph.D., PhD.,
Phys., Pre-Proc., Proc., Prof., Profs., Rd., Re-Eng., Rev., S.p.A., Sch., Sci., Sect., Sekr.,
Sen., Sept., Soc., Sr., St., Stn., Stud., Succ., Symp., Syst., Technol., Tel., Theor.,
Theoret., Univ., Vol., Vt., W.l.o.g., Work-Conf., a.a., a.e.w., a.k.a., a.m., a.s., a.u.,
aff., alg., algm., algms., anal., appl., appls., approx., archit., archits., arith., assoc.,
avail., b.o.d., biol., boul., c.f., c.m., calc., ccts., cf., circ., cit., combinat., commun.,
conf., constr., contrib., correl., cross-develop., d.o.f., defn., determ., diags., dimens.,
distr., distrib., dyn., e.V., e.g., edn., eds., elec., engng., environ., eq., estim., etc.,
evol., expt., expts., fl., fns., g.c.i., geom., gov., heterog., high-perform., high-resoln.,
hist., hyperb., i.c., i.e., i.i.d., inc., indust., instrum., integrat., intell., intens.,
internat., intr., intro., jns., l.h.s., lang., langs., lb., m.c., maint., mech., mfg., mgt.,
mil., mission-crit., modif., mol., n-dimens., n.b.c., n.d.d., navig., nonlin., nos., o.c.s.,
objs., op., optim., p., p.d.f., p.m., particle-syst., perform., pers., phenom., phys., pol.,
poss., pp., preconf., probab., prod., prog., propag., pt., punt., qualitat., quantitat.,
r.h.s., r.m.s., r.p.m., r.v., recogn., reconstr., refl., reliab., rer., s.d., s.t., sc.,
scatt., sci., semicond., sens., seqs., simul., simuls., single-proc., sq., std., stds.,
symp., syst., systs., t.o., techn., technol., technols., techs., topol., transl., transm.,
vol., volc., vs., w.h.p., w.l.o.g., w.r.t.

� Abbreviations containing uppercase letters: e.g., GmbH., BTech.
� Abbreviations containing multiple periods: e.g., w.r.t., M.Math., S.p.A.
� Abbreviations shorter than three letters: e.g., pp., cf., Av.

If both identification methods are failing, the pattern is not treated as an abbreviation.

5.7 Generating Multi-Term Dictionaries via Concordances

One hypothesis of this work is that the identification of multi-terms is helpful not only for
natural language processing but improves information retrieval related tasks. Experiments
that confirm this hypothesis are conducted by Arazy and Woo [20]. Multi-terms, defined as a
continuous sequence of words (adjacent tokens, n-grams), often belong together creating a
semantic unit. Multi-terms can be classified into several categories: composite nouns (e.g.,
information retrieval), named entities with a minimum of two tokens (e.g., Ford Motor

Company), formulaic speech (e.g., catch the bus), full forms of acronyms (e.g., Central

Intelligence Agency (CIA)), etc.
This section shows how meaningful multi-terms can be extracted from the corpus au-

tomatically. The goal of this section is to extract meaningful multi-terms from the corpus

128 5 Generation of Natural Language Resources Supporting Information Retrieval

automatically. The quality of the extracted results is improved by applying the elaborated
stopword lists (described in Section 4.6) for filtering of unlikely patterns. Depending on the
extraction task the different stopword layers and linguistic stopword categories are exploited.

One important issue of multi-term detection is that their length is significant. For instance,
the multi-terms information retrieval system and information system are not bound to
each other. In contrast, the multi-terms world wide and wide web do not occur independently.
They occur only in combination with each other in world wide web. Thus, longer multi-terms
have to be identified before shorter ones.

In the sequel three approaches are described: A first approach, aiming at composite nouns,
extracts token sequences consisting of small letter tokens only. Sequences containing at least
one token that is a functional stopword or that is shorter than three letters are neglected. A
second approach identifies named entities. Token sequences consisting of small letters and
started by a single capital letter are extracted. As before, sequences containing stopwords or
tokens smaller than three letters are excluded. A third approach focuses on the extraction of
token sequences that are missed by the previous composite noun extraction and named entity
extraction tasks. The goal is the identification of formulaic speech and other patterns that are
still useful for information retrieval.

5.7.1 Pattern Extraction Suited for Composite Nouns

This section deals with the automatic generation of non-capitalized token sequences that
fall into the categories of composite nouns and non-capitalized named entities longer than a
single token. The Pattern Extractor extracts sequences of two, three, four, five, six, and seven
adjacent tokens of type ALPHA_COMMON_LOWER. Preliminary tests indicate that longer
sequences are inappropriate multi-terms because these do not constitute composite nouns
but arbitrary parts of sentences. During extraction, left and right contexts are not considered.
Extracted multi-terms are sorted according to their frequency in decreasing order.

Multi-terms that include stopwords are ignored by the Pattern Extractor. This is done for
two reasons: First, the amount of extracted patterns increases exponentially compared to the
number of documents analyzed. Thus, excluding multi-terms that contain stopwords reduces
the data load tremendously. The remaining multi-terms become applicable for information
retrieval. Second, neglecting stopwords in token sequences leads to multi-terms that are closer
related to semantic concepts than to complete phrases. Since users tend to search for concepts
instead of phrases including articles and pronouns1, this approach better fits information
retrieval related tasks.

1The daily updated google trends website provides an insight of popular user queries: http://google.com/trends
(05.05.2008)

5

5.7 Generating Multi-Term Dictionaries via Concordances 129

One has to note that processing of longer multi-terms requires a considerably larger
amount of memory than processing of shorter ones. Although the number of longer sequences
decreases (longer sequences are more often interrupted by stopwords or tokens of other types),
the number of unique multi-terms is much higher. However, the procedure can be applied on
non-overlapping subsets of documents independently. A final result for the whole collection
is obtained by merging the results for the sub-collections.

Experiment I - Stopword Filtering

An initial experiment evaluates the reduction factor of multi-terms by applying stopword
filtering. For illustration and comparison purpose, this experiment is restricted to 3.000
INEX documents. A higher number of documents exceeds the maximum of two gigabytes of
Java-addressable working memory. For each multi-term length (two, three, four, five, six, and
seven tokens) several experimental runs are conducted. One run without stopword filtering,
one run for each linguistic stopword category, one run for each stopword layer (functional,
content-related, and domain-specific), and one run for the whole set of stopwords.

Figure 5.2 presents the results of the experiment. The different lengths of the multi-terms
are color-coded. The type of stopword filtering (see Section 4.6) is indicated by the labels
on the x-axis. NONE means no stopword filtering, FS (resp. CR and DS) are the functional
(resp. content-related and domain-specific) stopword layers, FS_SUM (resp. CR_SUM and
DS_SUM) stands for the union of all FS (resp. CR and DS) stopwords, and ALL is the union
of all stopwords. For instance, the figure shows that the total number of 6.117.535 multi-terms
of two tokens is reduced to 1.439.427 (23,5%) by functional stopwords, 4.580.504 (74,9%) by
content-related stopwords, and 5.412.582 (88,5%) by domain-specific stopwords. The union of
all stopwords reduces the number of multi-terms to 614.141 (10,0%). Especially determiners
DET, prepositions PREP, and connectors CONN turn out to be excellent linguistic filter
categories.

In addition to the filtering effect of independent stopword categories and stopword
layers, the cumulative filtering effect of stopwords is investigated in Figure 5.3. This effect is
evaluated on the same but unique set of multi-terms extracted. In the figure, the linguistic
stopwords categories are successively applied for filtering from left (no filtering) to right
(complete filtering using all stopwords).

Obviously, the number of shorter multi-terms is higher than the number of larger multi-
terms. Consider a text consisting of four tokens: This token sequence contains at most three
multi-terms of length two, two multi-terms of length three, or one multi-term of length four.
Further constraints on the tokens (e.g., a certain token type as ALPHA_COMMON_LOWER)
emphasize this effect. A different effect occurs by applying the unique constraint. Because
there are less different combinations of a smaller number of tokens than of a larger number

130 5 Generation of Natural Language Resources Supporting Information Retrieval

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

NONE

FS_D
ET

FS_A
UX

FS_P
REP

FS_P
RON

FS_P
ART

FS_C
ONN

FS_L
OG_O

P
FS_Q

FS_S
UM

CR_A
DJ

CR_A
DV

CR_N
CR_V

CR_S
UM

DS_A
DJ

DS_A
DV

DS_N
DS_V

DS_S
UM

ALL

length 2 length 3 length 4 length 5 length 6 length 7

Figure 5.2: Using stopword filtering on multi-terms (color code indicates length of the multi-terms)

of tokens, shorter multi-terms are summarized to a much smaller set of unique multi-terms
than longer ones. In the figure, these two effects become evident especially for the unfiltered
and unique multi-terms. Multi-terms of length two occur least often (1.162.842 times), while
multi-terms of length four occur most often (3.596.448 times).

As expected, longer multi-terms are filtered to a higher degree than shorter multi-terms.
The overall reduction results in 340.951 (29,3%) multi-terms of length two, 92.776 (3,1%)
multi-terms of length three, 15.425 (0,4%) multi-terms of length four, 2.535 (0,1%) multi-terms
of length five, 506 (0,02%) multi-terms of length six, and 155 (0,01%) multi-terms of length
seven.

5

5.7 Generating Multi-Term Dictionaries via Concordances 131

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3.500.000

4.000.000

NONE

FS_D
ET

FS_A
UX

FS_P
REP

FS_P
RON

FS_P
ART

FS_C
ONN

FS_L
OG_O

P
FS_Q

CR_A
DJ

CR_A
DV

CR_N
CR_V

DS_A
DJ

DS_A
DV

DS_N
DS_V

length 2 length 3 length 4 length 5 length 6 length 7

Figure 5.3: Cumulative filtering of linguistic stopword categories

Experiment II - Three Letter Constraint

An investigation of the results obtained by the first experiment shows that multi-terms
frequently include terms consisting of one or two letters. Examining the full form dictionary
generated in Section 5.6, a minimum length constraint of three characters per term is a good
choice A second experiment repeats the previous experiment with the same settings, including
the constraint of a minimal term length of three letters. Again, the 3.000 INEX documents of
the first experiment are used, and all linguistic stopword categories and stopword layers are
applied for filtering.

The results of the experiment are given in Figure 5.4. Compared to the first experiment,
the three letter constraint reduced the number of unfiltered composite nouns to 3.827.298
(62,6%) of length two, 2.389.252 (47,4%) of length three, 1.500.294 (35,5%) of length four,
947.234 (27,4%) of length five, 595.594 (21,1%) of length six, and 372.582 (16,2%) of length
seven. The figure shows that the number of multi-terms of length two is reduced to 37,3%
by functional stopwords, 71,4% by content-related stopwords, and 85,6% by domain-specific
stopwords, Applying all stopword layers combined, a final set of 606.169 (15,8%) length-two
multi-terms remains. Compared to the results of the first experiment, this drop of reduction

132 5 Generation of Natural Language Resources Supporting Information Retrieval

is explained by the pre-filtered one and two letter words, which are mostly included in the
functional stopwords (e.g., a, in, on, by).

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3.500.000

4.000.000

NONE

FS_D
ET

FS_A
UX

FS_P
REP

FS_P
RON

FS_P
ART

FS_C
ONN

FS_L
OG_O

P
FS_Q

FS_S
UM

CR_A
DJ

CR_A
DV

CR_N
CR_V

CR_S
UM

DS_A
DJ

DS_A
DV

DS_N
DS_V

DS_S
UM

ALL

length 2 length 3 length 4 length 5 length 6 length 7

Figure 5.4: Using stopword filtering on multi-terms (minimum of three letters per term)

Figure 5.5 depicts the cumulative filter effect on the unique multi-terms extracted. In
total, the three-letter filter reduces the number of cumulative filtered multi-terms to 337.746
(33,9%) of length two, 91.317 (5,3%) of length three, 14.426 (1,0%) of length four, 2.294 (0,3%)
of length five, 395 (0,1%) of length six, and 78 (0,02%) of length seven. Compared to the first
experiment, the three letter constraint reduces the number of stopword filtered multi-terms by
0,9% (two terms), 1,6% (three terms), 3,1% (four terms), 6,7% (five terms), 18,4% (six terms),
and 44,3% (seven terms).

Experiment III - Final List

Based on the previous findings, a third experiment creates a complete dictionary of composite
noun suited patterns. All documents in the INEX collection (16.819) are used. As before,
different lengthes of two, three, four, five, six, and seven tokens are extracted. Each term
must consist of at least three letters. No stopwords except content-related and domain-
specific nouns (CR_N and DS_N) are allowed within extracted multi-terms. In the context

5

5.7 Generating Multi-Term Dictionaries via Concordances 133

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1.600.000

1.800.000

NONE

FS_D
ET

FS_A
UX

FS_P
REP

FS_P
RON

FS_P
ART

FS_C
ONN

FS_L
OG_O

P
FS_Q

CR_A
DJ

CR_A
DV

CR_N
CR_V

DS_A
DJ

DS_A
DV

DS_N
DS_V

length 2 length 3 length 4 length 5 length 6 length 7

Figure 5.5: Cumulative filtering of linguistic stopword categories (minimum of three letters per term)

of extracting composite nouns the inclusion of these linguistic stopword categories seems
feasible.

Table 5.12 lists the top 5 composite noun suited patterns for each length ordered by
term frequency in decreasing order. In the table t f and d f refers to the term frequency and
document frequency of the multi-terms. The top 24 composite noun suited patterns for each
length are presented in the appendix in Section A.2. The results show that term and document
frequencies of longer multi-terms decrease quickly. Multi-terms of two, three, and four tokens
provide appropriate index terms. Longer sequences than four terms are more related to parts
of sentences or headlines than to composite nouns.

However, the number of unique composite nouns is huge compared to single-terms. In
order to become available as index terms, the number of multi-terms must be downsized.
Therefore, the average term frequency is used as a threshold for multi-term selection. The
numbers of final multi-terms are given in Table 5.13. # denotes the number of unique multi-
terms, Ø t f refers to the average term frequency of all multi-terms, and # ≥ Ø t f is the
number of unique multi-terms that occur more often than the average. Applying the average
term frequency as selection criteria turns out as an effective filter. Achieved reduction factors
are 95,7% (two terms), 90,5% (three terms), 94,6% (four terms), 96,6% (five terms), 97,4% (six
terms), and 98,0% (seven terms).

134 5 Generation of Natural Language Resources Supporting Information Retrieval

Table 5.12: Top 5 patterns suited for composite nouns
Multi-term t f d f

Two terms
execution time 6.870 1.405
electrical engineering 6.333 3.316
response time 3.803 804
source code 3.768 1.403
fault tolerance 3.758 1.024

Three terms
digital signal processing 385 301
natural language processing 303 186
partial differential equations 302 210
cache hit ratio 282 46
directed acyclic graph 251 198

Four terms
automatic test pattern generation 79 68
extended channel dependency graph 62 8
dynamic buffer allocation scheme 55 1
linear feedback shift register 51 38
parallel task completion time 48 1

Five terms
handoff call channel occupancy time 19 1
submit queries concerning historical events 10 10
average message latency versus traffic 10 4
scholarly archival journals inform readers 9 9
procedurally generated partial product reduction 9 1

Six terms
procedurally generated partial product reduction tree 9 1
row shift invariant wavelet packet transform 7 1
adaptive row shift invariant wavelet packet 7 1
vertex versus maximal clique incidence matrix 4 1
vertex versus maximal clique incidence matrices 4 1

Seven terms
adaptive row shift invariant wavelet packet transform 7 1
systolic redundant residue arithmetic error correction circuit 3 2
wird etwas knapp bei mir sagen wir 2 1
une courbe qui remplit toute une aire 2 2
temporal strata translate temporal query language statements 2 1

Table 5.13: Number of unique patterns suited for composite nouns
Multi-term length # Ø t f # ≥ Ø t f
two tokens 5.479.613 3,38 233.319
three tokens 1.002.764 1,35 94.798
four tokens 151.649 1,11 8.238
five tokens 23.473 1,05 795
six tokens 4.155 1,04 106
seven tokens 919 1,03 18

The composite nouns are integrated in JavaTok, enabling an efficient computation of
multi-term representations. These additional representations are exploited during indexing
and retrieval to improve retrieval performance.

5

5.7 Generating Multi-Term Dictionaries via Concordances 135

The procedure identifying stopwords (it f
id f ranking described in Section 4.6.2) can also be

applied on multi-terms. This results in the generation of stop-phrases, which adds a fourth
layer to the stopword model depicted in Figure 4.10. However, the structured document
retrieval prototype developed does not apply stop-phrase filtering.

5.7.2 Pattern Extraction Suited for Named Entities

The same procedure obtaining composite nouns is applied to generate a list of named
entity suited patterns. Again, sequences of two to seven tokens starting with capital letters
(token type ALPHA_COMMON_UPPER) are extracted. According to the composite noun
experiment, the minimum term length is three characters. Multi-terms containing stopwords
except content-related and domain-specific nouns (CR_N and DS_N) are not extracted. As
for the final composite noun experiment, the inclusion of nouns within named entities is
plausible.

The top 5 named entity suited patterns of each length are presented in Table 5.14. t f
and d f refer to the term frequency and document frequency. The top 24 named entities are
included in the appendix in Section A.3. The results show that top-ranked named entity
patterns and composite noun patterns occur with similar frequencies. Extracted multi-terms
longer than four terms tend to denote list of names instead of named entities. In some
cases, the mapping of the original INEX documents onto the generic document format (see
Section 3.3) led to text recurrences. It occurs if two XML components are combined in a single
FRA element and explains the repetition of terms in the named entities of length five, six, and
seven.

The numbers of extracted named entities are given in Table 5.15. Although uniquely
named entity patterns are not as numerous as composite nouns, a reduction is still necessary
for indexing and retrieval. As in the previous experiment, only multi-terms that are more
frequent than the average term frequency of the actual multi-term length (≥ Ø t f) are selected.

136 5 Generation of Natural Language Resources Supporting Information Retrieval

Table 5.14: Top 5 patterns suited for named entities
Multi-term t f d f

Two terms
Pattern Recognition 5.914 1.575
Machine Intelligence 5.670 1.568
Artificial Intelligence 4.802 1.819
Distributed Computing 3.885 1.749
Parallel Processing 3.057 1.227

Three terms
World Wide Web 2.650 1.505
Pattern Recognition Letters 444 287
Unified Modeling Language 394 274
Internet Engineering Task 328 284
Ad Hoc Networks 311 74

Four terms
World Wide Web Consortium 272 230
Internet Engineering Task Force 272 237
Reader Interest Survey Indicate 204 204
Goddard Space Flight Center 166 118
Virtual Reality Modeling Language 150 136

Five terms
Sara Reese Hedberg Sara Reese 23 23
Reese Hedberg Sara Reese Hedberg 23 23
Linda Dailey Paulson Linda Dailey 23 23
Dailey Paulson Linda Dailey Paulson 23 23
Markov Regenerative Stochastic Petri Nets 22 8

Six terms
Sara Reese Hedberg Sara Reese Hedberg 23 23
Linda Dailey Paulson Linda Dailey Paulson 23 23
Mary Jean Harrold Mary Jean Harrold 11 11
Shari Lawrence Pfleeger Shari Lawrence Pfleeger 9 9
Khaled El Emam Khaled El Emam 9 9

Seven terms
Mo Kim Cheng Albert Mo Kim Cheng 7 7
Albert Mo Kim Cheng Albert Mo Kim 7 7
Optimal Infinite Impulse Response Edge Detection Filters 5 5
Stochastic Petri Nets Representing Generalized Service Networks 4 4
Reversible Jump Markov Chain Monte Carlo Computation 4 4

Table 5.15: Number of unique patterns suited for named entities
Multi-term length # Ø t f # ≥ Ø t f
two tokens 955.390 3,55 41.473
three tokens 232.245 1,98 15.276
four tokens 54.891 1,51 6.682
five tokens 9.873 1,25 872
six tokens 3.953 1,13 225
seven tokens 2.055 1,03 37

5

5.7 Generating Multi-Term Dictionaries via Concordances 137

5.7.3 Pattern Extraction Suited for Formulaic Speech

A third approach aims at the extraction of multi-terms that are missed by the composite
noun and named entity extraction tasks. These multi-terms are summarized as formulaic
speech patterns, including not only common language patterns but other multi-terms that
were excluded from previous extraction for three reasons:

1. token sequences consist of mixed token types (e.g., United States of America)
2. token sequences contain tokens of one or two characters (e.g., et al)
3. token sequences contain stopwords (e.g., state of the art)

From the information retrieval point of view, this allows to include stopwords in multi-term
indices although stopword filtering is applied on single-terms.

Accounting for such patterns, a first experiment extracts token sequences of
two to seven tokens containing both token types, ALPHA_COMMON_LOWER and
ALPHA_COMMON_UPPER. The length of token strings is not accounted for and all strings
are converted into lower case. Stopword checking is disabled. Only multi-terms not included
in the composite noun or named entity dictionaries are extracted. Note that this extraction
tasks includes composite noun or named entity patterns that are missed by the previous
experiments. This is the case if patterns are used only at the beginning of sentences or as
titles where the first term is capitalized.

The numbers of unique multi-terms (#) are given in Table 5.16. Ø t f is the average term
frequency and # ≥ Ø t f the number of multi-terms with a higher term frequency than the
average. However, the high numbers of unique multi-terms require further filtering to become
useful for retrieval.

Table 5.16: Number of unfiltered formulaic speech
Multi-term length # Ø t f # ≥ Ø t f
two tokens 48.623.745 18,20 2.671.814
three tokens 44.899.721 2,54 16.041.542
four tokens 38.341.039 1,33 26.118.414
five tokens 32.096.913 1,12 27.450.841
six tokens 26.687.256 1,06 24.745.505
seven tokens 22.088.444 1,04 21.071.165

An investigation of the unfiltered multi-terms shows that mainly functional stopwords
occur frequently in the patterns (see Table 5.17). The multi-terms in the table are sorted
according to their term frequencies. As before, multi-terms longer than five terms turn out to
be inappropriate for indexing.

Based on the intermediate results of the initial experiment (see Tables 5.16 and 5.17), a
second experiment including minimal stopword filtering is run. In order to reduce the number
of patterns extracted, multi-terms started or ended by functional stopwords are excluded.

138 5 Generation of Natural Language Resources Supporting Information Retrieval

Table 5.17: Top-ranked unfiltered formulaic speech
Multi-term length Multi-terms

two tokens
of the, in the, to the, and the, on the, can be, for
the, of a, is a, number of

three tokens
curricula vitae of, the university of, the number
of, as well as, one of the, a set of

four tokens
vitae curricula vitae of, curricula vitae
curricula vitae, at the university of, from the
university of, his research interests include

five tokens
curricula vitae curricula vitae of, is a member of
the, he is a member of, in computer science from
the

six tokens
he is a member of the, computer science from the
university of, in computer science from the
university

seven tokens
in computer science from the university of, of
computer science at the university of, in
electrical engineering from the university of

Table 5.18 lists the top 5 extracted patterns with their term frequency t f and document
frequency d f . The top 24 ranked formulaic speech suited patterns are given in Section A.4 in
the appendix.

As explained for the named entity extraction, mapping difficulties of the INEX documents
onto the generic format lead to the repetition of texts. In Table 5.18, the multi-term curricula

vitae curricula vitae indicates that curricula vitae occurs as an attribute in the <sec

title="curricula vitae"> element and in the content of the element itself. During the
mapping, both contents were merged into a single FRA element. As a consequence, the al-
gorithm correctly extracted the three multi-terms vitae curricula vitae, curricula vitae

curricula, and curricula vitae curricula vitae all with the same term frequency t f and
document frequency d f . Generally, this kind of ‘redundant mentioning’ is not the norm in
the INEX documents. Correcting these errors manually would cost much time, which stands
in no relation to the benefits.

The final numbers of multi-terms are given in Table 5.19. In contrast to the multi-terms
extracted previously, only patterns occurring five times more often than the average term
frequency (# ≥ 5 · Ø t f) are extracted. This threshold is chosen for two reasons: (1) The
high number of multi-terms would drop retrieval performance, and (2) the result covers a
lot of less frequent multi-terms that are not relevant for information retrieval. Although the
extracted patters are definitely useful for further linguistic analysis, their benefit for retrieval
has to be evaluated. Extracted multi-terms longer than three terms only marginally coincide
with pure concepts. However, top-ranked patterns seem to be helpful during searches. The
extracted patterns further include:

5

5.7 Generating Multi-Term Dictionaries via Concordances 139

Table 5.18: Top 5 patterns suited for formulaic speech
Multi-term t f d f

Two terms
computer science 29.743 8.233
research interests 14.241 6.737
et al 12.946 3.645
software engineering 11.901 2.927
interests include 11.382 5.923

Three terms
vitae curricula vitae 11.048 11.048
curricula vitae curricula 11.048 11.048
research interests include 10.260 5.479
parallel and distributed 6.937 2.158
analysis and machine 5.425 1.487

Four terms
curricula vitae curricula vitae 11.048 11.048
pattern analysis and machine 5.404 1.480
analysis and machine intelligence 5.384 1.478
science from the university 3.796 2.575
degree in computer science 3.765 2.125

Five terms
pattern analysis and machine intelligence 5.378 1.476
computer science from the university 3.602 2.455
paper is organized as follows 2.005 2.005
computer science at the university 1.998 1.465
computer vision and pattern recognition 1.918 733
electrical engineering and computer science 1.055 756

Six terms
professor in the department of computer 1.224 986
department of electrical and computer engineering 818 597
vitae curricula vitae of curricula vitae 550 550
curricula vitae curricula vitae of curricula 550 550
science from the university of california 542 459
professor in the department of electrical 525 457

Seven terms
degree in computer science from the university 1.139 857
professor in the department of computer science 1.001 833
professor of computer science at the university 624 548
department of computer science at the university 580 476
curricula vitae curricula vitae of curricula vitae 550 550

Table 5.19: Number of unique patterns suited for formulaic speech
Multi-term length # Ø t f # ≥ Ø t f # ≥ 5 · Ø t f
two tokens 1.218.870 5,66 165.344 33.529
three tokens 6.063.211 1,77 1.195.166 102.381
four tokens 9.046.078 1,26 915.462 65.591
five tokens 8.516.547 1,10 451.576 24.180
six tokens 7.100.605 1,06 252.461 11.612
seven tokens 6.057.925 1,05 168.818 6.823

� Expected writing patterns, e.g., et al, point of view, state of the art, paper is

organized as follows

140 5 Generation of Natural Language Resources Supporting Information Retrieval

� Single letter combinations in titles written in spread out capital letters: e.g., R E P O R T

(realized as a multi-term consisting of six capitalized single-letter tokens)
� Missing composite nouns in mixed case titles or acronyms, e.g., Computer science,

Research interests, National science foundation

5.8 Acronym Extraction and Expansion

Especially in technical documents, acronyms are extensively used to reduce the length of
a text, make the text more readable, and assign names to complex entities. Knowledge
about the meaning of an acronym is essential to understand the whole content. In other
words, misinterpretation of acronyms leads to confusion and obscurity. Within texts new
acronyms are often defined on demand. Therefore, complete lists of acronyms (even for
restricted domains) are not available. Acronyms have to be identified dynamically and must
be interpreted according to their context (eventually only valid in the current document).

From the information retrieval point of view, acronyms provide important information
about the content of a document. This is the reason for including acronyms in the index
terms. However, queries that address the full form of an acronym do not match texts that
solely contain the short form of the same acronym. In structured document retrieval where
small portions of texts (e.g., FRA elements) are compared against a query, this leads to a drop
of recall. On the other hand, queries addressing the short form of an acronym may retrieve in
a high number of results containing the acronym but with a different meaning. Thus, retrieval
precision decreases.

This section describes an automatic extraction process of acronyms and their corresponding
full forms. The retrieval engine uses the extracted patterns to expand queries to include both,
short and full forms of acronyms mentioned. Because queries are generally too short to apply
a proper context analysis, all known full forms are added for each acronym.

An acronym dictionary is created in two steps: First, acronym patterns together with their
contexts are extracted. Second, context analysis is applied for filtering incorrect full forms.
Figure 5.6 depicts the two patterns investigated. The first Pattern I extracts acronyms that
are followed by their embraced full forms. The opening and closing brackets are exploited to
identify the complete full form. The second Pattern I I identifies full forms that are followed
by their embraced acronyms (reverse lookup). In contrast to the first pattern, the size of
the full form (number of terms included) is not defined explicitly. Because acronyms may
contain words that do not appear in the acronym string itself (e.g., of, for, in, and), a dynamic
matching approach is applied.

In the experiment, two to seven letter single-tokens typed as ALPHA_ACRONYM_SIMPLE
are investigated. The size of the pre-window (resp. post-window) is set to the number of

5

5.8 Acronym Extraction and Expansion 141

...(...)...ACRONYM

Pattern II

Pattern I

post-windowpattern of length 2

ACRONYM()

pattern of length 3

...

pre-window

full form

full form

Figure 5.6: Extracted acronym patterns

characters in the acronym plus five additional single-tokens. This allows up to five context
words being included which are not reflected in the acronym itself. These words are allowed
to be stopwords of the functional stopword layer only.

Each extracted context (full form) is analyzed according to its conformance with the
acronym (short form). Three different strategies are tested:

� S1: The same number of tokens than letters in the acronym is extracted.
� S2: The same number of tokens than letters in the acronym is extracted. Initial token-

string letters must match the corresponding acronym letters.
� S3: The same or a higher number of tokens than letters in the acronym is extracted.

Initial token-string letters must match the corresponding acronym letters. However,
functional stopwords that do not correspond with acronym letters are allowed.

Table 5.20 summarizes the number of extracted acronyms according to each strategy.

Table 5.20: Number of unique extracted acronyms
Pattern I Pattern II Pattern I ∪ Pattern II

Acronym length S1 S2 S3 S1 S2 S3 S1 S2 S3
two letters 323 206 206 5.192 2.509 2.608 5.428 2.630 2.729

three letters 1.218 1.051 1.051 15.940 7.588 8.187 16.539 8.037 8.636
four letters 533 451 451 8.879 2.695 3.621 9.197 2.942 3.868
five letters 95 68 68 2.157 372 674 2.232 422 724
six letters 29 18 18 643 43 106 669 59 122

seven letters 8 4 4 245 2 9 252 6 13

The results show that acronym patterns in the INEX documents are commonly used.
Pattern I I (e.g., ...Unified Modeling Language (UML)...) occurs more often than Pattern I
(e.g., ...DAG (Directed Acyclic Graph)...). The majority of acronyms consist of three and
four letters, where three letter acronyms are most frequent. But even longer acronyms of
length six and seven characters are meaningful search concepts. Interestingly, the acronyms of
Pattern I and Pattern I I show only marginal overlap (see the last three columns in Table 5.20).

142 5 Generation of Natural Language Resources Supporting Information Retrieval

Another observation is that acronyms defined by Pattern I never included a stopword in
their corresponding full form. This becomes evident by investigating the strategies S2 and S3,
which resulted in the same acronyms (regardless their lengths).

Strategy S1 extracts all occurrences of a pattern. However, it includes many incorrect
full forms of acronyms for both acronym patterns (see Table 5.21). The second strategy S2
matching first letters minimizes these errors and results in 41,1% of all patterns. Unfortunately,
S2 excludes a lot of acronyms that include stopwords. Hence, the third strategy S3 relaxes the
first letter matching constraint of S2 by allowing functional stopwords within the acronyms’
full form. S3 results in 46,9% of all extracted acronyms.

Table 5.21: Examples of incorrectly identified acronyms applying strategy S1
Acronym Full form t f d f

Two tokens
EM the expectation-maximization 42 1
TR v i 20 1
XP extreme programming 20 2
HA faulty fa 12 1
MP t comm 11 1

Three tokens
MIT institute of technology 77 2
USC of southern california 53 9
ETH institute of technology 45 5
CNR national research council 41 5
ISO organization for standardization 41 2

Four tokens
NIST of standards and technology 55 3
CVPR vision and pattern recognition 35 9
RTSS ieee real-time systems symposium 34 20
PLDI language design and implementation 33 4
NCSA center for supercomputing applications 33 3

Five tokens
KAIST institute of science and technology 56 9
NSERC engineering research council of canada 34 11
JETTA testing : theory and applications 21 7
CIPIC image processing and integrated computing 20 6
DISCA the department of computer engineering 17 5

Six tokens
ASPLOS for programming languages and operating systems 30 3
SWEBOK the software engineering body of knowledge 14 1
TAPADS aspects of parallel and distributed systems 11 5
LARPBS with a reconfigurable pipelined bus system 11 1
SIGMOD interest group on management of data 10 1

Seven tokens
EMMCVPR methods in computer vision and pattern recognition 7 3
NOSSDAV system support for digital audio and video 7 2
POSTECH at pohang university of science and technology 5 3
IWFHRVI sixth int’l workshop frontiers in handwriting recognition 4 1
SIGARCH acm special interest group on computer architecture 4 2

5

5.8 Acronym Extraction and Expansion 143

Applying strategy S3, the results of both patterns are given in Tables 5.22 and 5.23.

Table 5.22: Top 5 extracted acronyms (Pattern I)
Acronym Full form t f d f

Two tokens
IP Internet Protocol 71 1
IP intellectual property 59 1
VR virtual reality 58 2
AI Artificial Intelligence 49 3
ML maximum likelihood 45 1

Three tokens
NSF National Science Foundation 207 16
ATM asynchronous transfer mode 129 1
UML Unified Modeling Language 96 2
PCA principal component analysis 90 1
RDF Resource Description Framework 87 3

Four tokens
IETF Internet Engineering Task Force 85 3
VRML Virtual Reality Modeling Language 80 2
ISCA Int’l Symp. Computer Architecture 56 1
NIST National Institute of Standards and Technology 54 3
VLSI Very Large Scale Integration 50 2

Five tokens
DARPA Defense Advanced Research Projects Agency 88 6
CORBA Common Object Request Broker Architecture 58 2
KAIST Korea Advanced Institute of Science and Technology 52 9
ICDCS Int’l Conf. Distributed Computing Systems 20 2
CIPIC Center for Image Processing and Integrated Computing 20 6

Six tokens
ASPLOS Architectural Support for Programming Languages and Operating Systems 25 3
TAPADS Theoretical Aspects of Parallel and Distributed Systems 11 5
SIGMOD Special Interest Group on Management of Data 10 1
ICLASS Illinois Computer Laboratory for Aerospace Systems and Software 9 8
PECASE Presidential Early Career Award for Scientists and Engineers 9 3

Seven tokens
EMMCVPR Energy Minimization Methods in Computer Vision and Pattern Recognition 7 3
SHOSLIF Self-Organizing Hierarchical Optimal Subspace Learning and Inference Framework 2 1
SIGCAPH Special Interest Group for Computers and the Physically Handicapped 1 1
INSPASS Immigration and Naturalization Service Passenger Accelerated Service System 1 1
EMERALD Event Monitoring Enabling Responses to Anomalous Live Disturbances 1 1

The final dictionary contains 2.729 two letter acronyms, 8.636 three letter acronyms, 3.868
four letter acronyms, 724 five letter acronyms, 122 six letter acronyms, and 13 seven letter
acronyms. Tables containing the top 24 extracted acronyms of each length are attached in the
appendix in Section A.5. During retrieval the acronyms extracted provide an extra multi-term
index that is searched. In contrast to multi-terms of the previous section, the smaller number
allows indexing of the complete set of acronyms. Note that this index also includes stopwords
in special contexts and considers the order of words.

The results show clearly that both patterns investigated serve as an appropriate means
for extracting acronyms with high confidence. Promising patterns left open for further

144 5 Generation of Natural Language Resources Supporting Information Retrieval

Table 5.23: Top 5 extracted acronyms (Pattern II)
Acronym Full form t f d f

Two tokens
IP Internet protocol 19 1
EM expectation maximization 5 1
NS Network Simulator 5 2
CT computed tomography 5 1
LP longest path 4 3

Three tokens
PVM Parallel Virtual Machine 25 1
ATM asynchronous transfer mode 25 1
SQL Structured Query Language 23 1
LRU least recently used 21 2
CGI common gateway interface 18 1

Four tokens
VLIW very long instruction word 24 1
SNMP Simple Network Management Protocol 15 1
SGML standard generalized markup language 14 1
MIPS million instructions per second 13 2
TDMA time division multiple access 13 2

Five tokens
CORBA Common Object Request Broker Architecture 23 1
ENIAC Electronic Numerical Integrator and Computer 7 1
EDSAC Electronic Delay Storage Automatic Calculator 4 1
TSAPI Telephony Services Application Programming Interface 2 1
PALKA Parallel Automatic Linguistic Knowledge Acquisition 2 1

Six tokens
YUPPIE Yorktown Ultra Parallel Polymorphic Image Engine 3 1
PCMCIA Personal Computer Memory Card International Association 3 1
EBCDIC Extended Binary Coded Decimal Interchange Code 3 1
DOCSIS Data Over Cable Service Interface Specification 2 1
WIDTIO When In Doubt Throw It Out 1 1

Seven tokens
WYSIWYG what you see is what you get 5 1
WYSIWYR what you see is what you record 1 1
YCAGWYS you can always get what you see 1 1
WYSIWYC What You See Is What You Compute 1 1

investigation include plurals (e.g., POWs (Prisoners of War)), special capitalizations (e.g., XML
(eXtensibel Markup Language)), and multiple letter acronyms (e.g., HyREX (Hyper-media

Retrieval Engine for XML)).

5.9 Summary

This chapter described the generation of natural language resources that are relevant for
information retrieval. The experiments conducted solely rely on the output of Extended
Tokenization. Generated resources include typing rules for single-tokens and multi-tokens,
single-term dictionaries (full forms, abbreviations), and multi-term dictionaries (composite
nouns, named entities, formulaic speech, acronyms with corresponding full forms). These

5

5.9 Summary 145

resources are incorporated in the indexing and retrieval processes to improve retrieval
performance. Multi-term dictionaries and rules improve the output of the tokenizer and thus,
the quality of content representations. The rule generation process is supported by a Rule
Miner that infers rule proposals based on extracted patterns. A bootstrapping-like approach
is applied to identify meaningful patterns in similar contexts automatically.

6

Chapter 6 Controlling complexity is the essence of computer
programming.

B. Kernighan

Classification of XML Documents

With increasing amounts of available XML documents, the task of automatic knowledge
discovery from the web becomes highly significant. As an appropriate machinery, classification
allows to categorize documents to facilitate that task. In this chapter a classification approach
for structured documents is introduced. It is based on the k-nearest neighborhood algorithm
that relies on an edit distance measure. The originality of the work lies in combining both the
content and the structure of XML documents to compute the edit distance. The approach is
empirically evaluated using real-world XML collections provided by INEX.1

6.1 Introduction

The eXtensible Markup Language has recently emerged as a standard for developing many
web applications dealing with document storage and retrieval, e.g., digital libraries. XML was
mainly developed to achieve an enriched representation of documents and more retrieval
flexibility when searching information. Systems concerned with such web applications are
mainly augmented traditional information retrieval systems. In contrast to traditional retrieval
systems that deal with flat documents, XML retrieval systems take the logical structure of
documents into account. In addition to the raw text (pure content), this structure is considered
as a further valuable information source for document representation. It serves to refine the
search process and to improve the quality of the retrieval results. Indeed, each document
is represented as a tree of XML nodes, where each node is associated with a label and a
content (XML component). The goal of retrieval systems is, therefore, to retrieve only relevant
components instead of the whole documents in response to the user queries. As a matter of
consequence, the retrieval precision gets better.

Form the structured document point of view, it is of high importance to exploit the
structure of documents in order to devise a classification machinery. This latter is a very
significant mechanism in the context of XML retrieval for two reasons: (1) a user query

1Parts of this chapter have already been published in [30] and [121].

147

148 6 Classification of XML Documents

can be satisfied by means of different possible answers; closely associated documents tend
to be relevant to the same requests; thus, returning all documents of classes with relevant
documents is feasible, and (2) retrieval systems and web mining tools are generally operational
in the same environment.

Classifying (and clustering) XML documents can be basically done in three ways: (1) using
exclusively the textual contents of documents as usually done in traditional text categorization
(and clustering) systems, (2) using exclusively the structure of the XML documents, and (3)
using both the contents and the structure in a hybrid manner. In this work, the latter approach
is followed. The aim is to discover structural and content patterns (characteristics) shared by
XML documents of the same class. These patterns are mainly expressed in terms of their tags
(node labels), contents, and inter-relationship.

To achieve this goal, the k-nearest neighborhood algorithm is applied for classification.
The algorithm, which strongly relies on a distance measure, will be explained later. Since
an XML document is represented in the form of a tree, it is straightforward to adopt an edit
distance to measure the distance between document trees (dissimilarity measure). Basically,
edit distance algorithms compute the minimum cost to transform one document tree, the
source tree, into another document tree, the destination tree. Generally, existing algorithms
focus on the structure only. This chapter shows how the content can be embedded into the
edit distance. To the best of the author’s knowledge, no previous work has used edit distance
taking the content and structure of the XML tree into account.

The idea to measure the similarity between document-centric XML documents using
an edit distance measure is based on the way documents are written in real world. This
allows to take ‘natural’ document authoring techniques (see Figure 6.1) into account, applying
application-specific weights. Looking at real world documents, the structure is also quite
homogenous and could simply be reduced to a minimal set of different nodes (i.e., title,
author, section, paragraph, table, figure, etc.). This homogenous set of XML components,
which is highly recursive (i.e., chapter, section, subsection), leads to quite similar document
structures of completely different content. Thus, an appropriate similarity measure plays a
key role in this domain.

The rest of this chapter is organized as follows. Some of the research work dedicated
to XML document classification is briefly summarized in Section 6.2. In Section 6.3, the
edit distance algorithm is discussed with respect to content and structure. An alternative
approach, based solely on the content of documents, is introduced in Section 6.4. Section 6.5
briefly explains the k-NN algorithm. Section 6.6 discusses the experimental evaluation of the
approaches. Finally, Section 6.8 concludes this chapter.

6

6.2 Related Work 149

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

bbbbbb
bbbbbb

SEC

cccccc
cccccc

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

B C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

B C

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

cccccc
cccccc
cccccc
cccccc

C

SEC

Source DestinationSource Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B B

Source Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

AB

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

b1b2b3
b4b5b6
b7b8b9

Source Destination

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

Source Destination

SEC sec

BC

bbbbbb
bbbbbb
cccccc
cccccc

Source Destination

aaaaaa
aaaaaa
bbbbbb
bbbbbb

AB B

aaaaaa
aaaaaa

bbbbbb
bbbbbb

A C

cccccc
cccccc
cccccc
cccccc

C

cccccc
cccccc
cccccc
cccccc

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

Source Destination

Source Destination Source Destination

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B C

B C

SEC

cccccc
cccccc
cccccc
cccccc

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

SEC

cccccc
cccccc
cccccc
cccccc

C

bbbbbb
bbbbbb
bbbbbb
bbbbbb

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A B

SEC SEC

(a) inserting

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

bbbbbb
bbbbbb

SEC

cccccc
cccccc

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

B C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

B C

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

cccccc
cccccc
cccccc
cccccc

C

SEC

Source DestinationSource Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B B

Source Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

AB

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

b1b2b3
b4b5b6
b7b8b9

Source Destination

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

Source Destination

SEC sec

BC

bbbbbb
bbbbbb
cccccc
cccccc

Source Destination

aaaaaa
aaaaaa
bbbbbb
bbbbbb

AB B

aaaaaa
aaaaaa

bbbbbb
bbbbbb

A C

cccccc
cccccc
cccccc
cccccc

C

cccccc
cccccc
cccccc
cccccc

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

Source Destination

Source Destination Source Destination

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B C

B C

SEC

cccccc
cccccc
cccccc
cccccc

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

SEC

cccccc
cccccc
cccccc
cccccc

C

bbbbbb
bbbbbb
bbbbbb
bbbbbb

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A B

SEC SEC

(b) deleting
SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

bbbbbb
bbbbbb

SEC

cccccc
cccccc

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

B C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

B C

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

cccccc
cccccc
cccccc
cccccc

C

SEC

Source DestinationSource Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B B

Source Destination

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

AB

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

b1b2b3
b4b5b6
b7b8b9

Source Destination

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

Source Destination

SEC sec

BC

bbbbbb
bbbbbb
cccccc
cccccc

Source Destination

aaaaaa
aaaaaa
bbbbbb
bbbbbb

AB B

aaaaaa
aaaaaa

bbbbbb
bbbbbb

A C

cccccc
cccccc
cccccc
cccccc

C

cccccc
cccccc
cccccc
cccccc

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

Source Destination

Source Destination Source Destination

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B C

B C

SEC

cccccc
cccccc
cccccc
cccccc

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

SEC

cccccc
cccccc
cccccc
cccccc

C

bbbbbb
bbbbbb
bbbbbb
bbbbbb

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A B

SEC SEC

SEC SEC

(c) altering

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

bbbbbb
bbbbbb

SEC

cccccc
cccccc

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

B C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

B C

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

cccccc
cccccc
cccccc
cccccc

C

SEC

Source DestinationSource Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B B

Source Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

AB

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

b1b2b3
b4b5b6
b7b8b9

Source Destination

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

Source Destination

SEC sec

BC

bbbbbb
bbbbbb
cccccc
cccccc

Source Destination

aaaaaa
aaaaaa
bbbbbb
bbbbbb

AB B

aaaaaa
aaaaaa

bbbbbb
bbbbbb

A C

cccccc
cccccc
cccccc
cccccc

C

cccccc
cccccc
cccccc
cccccc

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

Source Destination

Source Destination Source Destination

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B C

B C

SEC

cccccc
cccccc
cccccc
cccccc

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

SEC

cccccc
cccccc
cccccc
cccccc

C

bbbbbb
bbbbbb
bbbbbb
bbbbbb

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A B

SEC SEC

(d) copying

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

bbbbbb
bbbbbb

SEC

cccccc
cccccc

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

B C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

B C

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

cccccc
cccccc
cccccc
cccccc

C

SEC

Source DestinationSource Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B B

Source Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

AB

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

b1b2b3
b4b5b6
b7b8b9

Source Destination

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

Source Destination

SEC sec

BC

bbbbbb
bbbbbb
cccccc
cccccc

Source Destination

aaaaaa
aaaaaa
bbbbbb
bbbbbb

AB B

aaaaaa
aaaaaa

bbbbbb
bbbbbb

A C

cccccc
cccccc
cccccc
cccccc

C

cccccc
cccccc
cccccc
cccccc

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

Source Destination

Source Destination Source Destination

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B C

B C

SEC

cccccc
cccccc
cccccc
cccccc

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

SEC

cccccc
cccccc
cccccc
cccccc

C

bbbbbb
bbbbbb
bbbbbb
bbbbbb

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A B

SEC SEC

(e) moving

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

bbbbbb
bbbbbb

SEC

cccccc
cccccc

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

B C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

B C

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

cccccc
cccccc
cccccc
cccccc

C

SEC

Source DestinationSource Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B B

Source Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

AB

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

b1b2b3
b4b5b6
b7b8b9

Source Destination

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

Source Destination

SEC sec

BC

bbbbbb
bbbbbb
cccccc
cccccc

Source Destination

aaaaaa
aaaaaa
bbbbbb
bbbbbb

AB B

aaaaaa
aaaaaa

bbbbbb
bbbbbb

A C

cccccc
cccccc
cccccc
cccccc

C

cccccc
cccccc
cccccc
cccccc

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

Source Destination

Source Destination Source Destination

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B C

B C

SEC

cccccc
cccccc
cccccc
cccccc

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

SEC

cccccc
cccccc
cccccc
cccccc

C

bbbbbb
bbbbbb
bbbbbb
bbbbbb

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A B

SEC SEC

(f) merging

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

bbbbbb
bbbbbb

SEC

cccccc
cccccc

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

B C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

B C

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

cccccc
cccccc
cccccc
cccccc

C

SEC

Source DestinationSource Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B B

Source Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

AB

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

b1b2b3
b4b5b6
b7b8b9

Source Destination

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

Source Destination

SEC sec

BC

bbbbbb
bbbbbb
cccccc
cccccc

Source Destination

aaaaaa
aaaaaa
bbbbbb
bbbbbb

AB B

aaaaaa
aaaaaa

bbbbbb
bbbbbb

A C

cccccc
cccccc
cccccc
cccccc

C

cccccc
cccccc
cccccc
cccccc

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

Source Destination

Source Destination Source Destination

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B C

B C

SEC

cccccc
cccccc
cccccc
cccccc

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

SEC

cccccc
cccccc
cccccc
cccccc

C

bbbbbb
bbbbbb
bbbbbb
bbbbbb

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A B

SEC SEC

(g) splitting

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

bbbbbb
bbbbbb

SEC

cccccc
cccccc

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

B C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

B C

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

cccccc
cccccc
cccccc
cccccc

C

SEC

Source DestinationSource Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B B

Source Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

AB

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

b1b2b3
b4b5b6
b7b8b9

Source Destination

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

Source Destination

SEC sec

BC

bbbbbb
bbbbbb
cccccc
cccccc

Source Destination

aaaaaa
aaaaaa
bbbbbb
bbbbbb

AB B

aaaaaa
aaaaaa

bbbbbb
bbbbbb

A C

cccccc
cccccc
cccccc
cccccc

C

cccccc
cccccc
cccccc
cccccc

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

Source Destination

Source Destination Source Destination

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B C

B C

SEC

cccccc
cccccc
cccccc
cccccc

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

SEC

cccccc
cccccc
cccccc
cccccc

C

bbbbbb
bbbbbb
bbbbbb
bbbbbb

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A B

SEC SEC

(h) raising

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

bbbbbb
bbbbbb

SEC

cccccc
cccccc

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

B C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

B C

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

cccccc
cccccc
cccccc
cccccc

C

SEC

Source DestinationSource Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B B

Source Destination

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

A

SEC

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

cccccc
cccccc
cccccc
cccccc

AB

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

b1b2b3
b4b5b6
b7b8b9

Source Destination

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B

bbbbbb
bbbbbb
bbbbbb
bbbbbb

Source Destination

SEC sec

BC

bbbbbb
bbbbbb
cccccc
cccccc

Source Destination

aaaaaa
aaaaaa
bbbbbb
bbbbbb

AB B

aaaaaa
aaaaaa

bbbbbb
bbbbbb

A C

cccccc
cccccc
cccccc
cccccc

C

cccccc
cccccc
cccccc
cccccc

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

Source Destination

Source Destination Source Destination

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

SEC

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A

cccccc
cccccc
cccccc
cccccc

bbbbbb
bbbbbb
bbbbbb
bbbbbb

B C

B C

SEC

cccccc
cccccc
cccccc
cccccc

C

aaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbb
bbbbbb
bbbbbb
bbbbbb

A B

SEC

cccccc
cccccc
cccccc
cccccc

C

bbbbbb
bbbbbb
bbbbbb
bbbbbb

aaaaaa
aaaaaa
aaaaaa
aaaaaa

A B

SEC SEC

(i) lowering

Figure 6.1: Document authoring operations

6.2 Related Work

Although classification has been widely discussed in the framework of traditional information
retrieval (with flat documents), it has not yet gained much attention in the field of structured
documents. In the sequel, some of the research work dedicated to XML document classification
is briefly summarized.

In [64], a classification approach is proposed that aims at using the structure and the
contents to classify XML documents. It relies on a generative Bayesian classifier. Here, an

150 6 Classification of XML Documents

XML document is represented in the conventional tree-like form of a directed acyclic graph,
where each node of the graph represents a XML component and each edge represents a
parental relationship between the nodes. The generative model assumes that there are two
types of belief, structural and textual, which will be combined to get one single evidence
about a document assignment to classes:

P(doc|θ) = P(str|θ)× P(cont|str, θ)

where θ is a set of the model parameters, doc, str, and cont designate document, structure,
and content. The quantities P(str|θ) and P(cont|str, θ) are computed via a belief network as
follows:

P(str|θ) =
o f tags

∏
i=1

P(nodei|ancestor(nodei))

P(cont|str, θ) =
o f terms

∏
i=1

P(termi|nodej, θ)

During the training phase, the parameters of the generative model are learned using the
Expectation-Maximization method. During the classification phase, the classifier is used to
assign unseen XML documents to the class with the highest probability P(doc|classk).

In [33], a similar work to that described in [64] is developed. It consists of exploiting
structural information in semi-structured documents using a generative Bayesian Classifier.
The method, however, is less general, since the assumption is that all documents have the
same structure across all classes. Documents are broken down into components, each of
which contains either structured data or non-structured textual data. Let dj, ck, sl , ti, designate
respectively a document j, a class k, a component l, and a term i, the total probability of a
document is the product of the individual component probabilities:

P(dj|ck) = ∏
sl∈dj

∏
ti∈sl

Psl (ti|ck) f j(tis)

where f j(tis) indicates the word frequency of term i in the sth component of the document
j. The first product is over all structural components sl that are present in the document dj.
The probability Psl is obtained for each document component. From this, it is clear that each
document is represented by a set of feature vectors, one for each component, so that word
frequency f j(tis) is maintained on a per-component basis.

In [264] a classifier, called XRules, is developed. This classifier is structure-oriented and
aims at discovering a set of structural rules that define the individual classes. Basically, these
rules that reflect regular structural patterns of each class are learned during the training

6

6.2 Related Work 151

phase. During the classification phase, given an unlabeled XML document, the set of rules
pertaining to that document are used to compute the membership evidence to classes.

Hence (document) trees are a special form of graphs, approaches from the graph matching
and comparison domain can also be applied [251, 265, 179, 40, 184, 229, 56, 138, 139, 100, 140].
Nearly all of these approaches rely on additional heuristics to reduce the graph isomorphism
problem, which is considered to be NP-complete [166], to a simpler problem definition.
These heuristics, for the sake of comparing document-centric XML documents, are not on
hand. Also, the additional freedom in the structure provided by a graph representation seems
not to reflect the natural way of document authoring. Because of this and their runtime
performance (high complexity) these approaches are not investigated in this work.

Most of the work in the area of XML documents classification uses tree edit distance to
measure the distance between XML document trees. Basically, edit distance algorithms
compute the minimum cost to transform one document tree into another. Each transformation
(e.g., insert, delete, alter) is associated with a certain cost. In addition to the edit distance
measure, other approaches apply other types of distance measures. These rely on XML
peculiarities such as tags, parent-child relationships, root-leaf XPaths, arity of nodes, etc. [267,
43, 71, 198].

Many algorithms have been proposed to compute the edit distance between two trees
[49, 48, 47, 54, 232, 266, 252, 227]. Most of these algorithms use dynamic programming
techniques as initially described in [162]. The aim is to find the cheapest sequence of
transformations (i.e., the cumulated costs), called delta script or edit script [49, 254, 253], to
transform a tree T1 into a tree T2.

dist(T1, T2) = min
j
{sj} (6.1)

sj =
trans f ormations

∑
i

t(j)
i (6.2)

where sj is a script, and t(j)
i is the cost of a transformation i in the edit script j.

The main difference of the various edit distance measures is the set of allowed edit
operations and their associated costs. Early work [225] considered insert and delete of leaf
nodes, and node relabeling of all nodes. Extensions were then proposed to allow insertion and
deletion of nodes anywhere in the tree [232, 266, 252, 227].

In general the problem of finding the edit distance between two trees is NP-hard [171,
232, 25]. Works in [266] and [49] instead try to find an efficient algorithm for the reduced
problem of ordered/binary trees, in which a left-to-right order among siblings is significant.
For XML documents arising in database applications (data-centric applications), authors
believe that the unordered model is more important [254]. However, in the context of XML

152 6 Classification of XML Documents

documents originating from natural language texts (document-centric applications) one can
argue for ordered trees.

Chawathe et al. [49] first applied the same edit operations and restrictions to detect
changes in structured documents. In subsequent works he extended the approach to cover
also move operations as basic edit operations [48]. Later he defined operations for copying
and gluing of subtrees [47]. In order to accelerate edit distance calculations, Guha et al. [113]
relax the problem to computationally inexpensive upper and lower bounds. Nierman and
Jagadish [187] implemented their algorithm based on Chawathe’s work.

Zhang and Shasha [266] provide a fast algorithm to calculate the edit distance between
ordered labeled trees. The minimum costs for mapping all descendants of a node is computed
in advance, using the notion of keyroots. Keyroots of a tree are defined as the set of all
first-level children having left siblings plus the root node itself. Computing the keyroots of a
tree in advance applies the concepts of tree distance and forest distance. The tree distance is
calculated as the distance between two (sub-)trees without considering the context of ancestors
and/or siblings. The forest distance, instead, uses the tree distance and takes ancestor and
sibling relations into account. To get the minimum transformation cost for two trees, the
minimum cost mapping from all keyroots amongst the children and the cost of the leftmost
child (forest distance of its rightmost child) is needed. The algorithm then proceeds from the
leaf nodes up to the root node in a postorder traversal.

Further methods dealing with similarity of XML documents can be found in the literature
related to structural mapping, e.g., change detection [54, 253]. A good overview of existing
algorithms for change detection together with their properties is given by Peters [200] and by
Dalamagas et al. [60].

6.3 Tree Matching via Edit Distance

In order to apply any kind of (semi-)automatic classification mechanism on semi-structured
documents, one has to define a metric that expresses the similarity of two documents first.
Based on this similarity a certain distance between two documents can be defined by means
of a ‘dissimilarity’.

Several metrics which are quite different in terms of how this similarity is computed can
be found in the literature. Mainly they can be categorized into two categories:

� Heuristic approaches: Mainly statistically motivated, these methods match documents
by comparing common tags, parent-child relations, root-leaf XPaths, arity of nodes,
etc. [267, 43, 264].

6

6.3 Tree Matching via Edit Distance 153

Table 6.1: Overview of change detection algorithms and properties [200]
Algorithm Complexity Memory Operations Tree type

LaDiff O(ne + e2) linear basic, move ordered
MH-Diff O(n2 log n) - basic, move, copy unordered

XMLTreeDiff O(n2) quadratic basic ordered
MMDiff O(n2) quadratic basic ordered
XMDiff O(n2) linear basic ordered

IBM’s XML Diff & Merge − - basic -
3DM’s matching algorithm O(n) - basic, move ordered

XyDiff O(n log n) linear basic, move ordered
VM Tools − - - unordered
DiffXML O(ne + e2) linear basic, move ordered
KF-Diff+ O(n) - basic both

XML Diff and Patch − - - both
X-Diff O(n2) quadratic basic unordered

DeltaXML − linear basic both
TreePatch O(ne + e2) linear basic, move -
BioDIFF O(n2) quadratic basic unordered

� Tree-based approaches: These approaches measure the similarity of two documents
represented as labeled trees. Depending on their application, three different methods
can be distinguished [26]:

� Tree edit distance is defined as the minimum cost of transforming one tree into
the other (see [49, 266, 227]). Each transformation (e.g., insert, delete, alter) is
associated with a certain cost. The algorithm has to find the cheapest sequence of
transformations known as delta script. Extensions of these approaches also operate
on (rooted) graphs. Figure 6.2 shows the transformation from the source tree to
the destination tree. In (a) the nodes C and E are deleted from the source tree,
generating an intermediate tree (b). Afterwards, the nodes H and I are inserted
into the intermediate tree. Finally, altering the nodes B to B′ and D to D′ results in
the destination tree (c).

� Tree alignment is defined as the cumulated cost for matching all nodes of a source
tree T1 to all nodes of an isomorphic destination tree T2 [144] (disregarding node
labels). The cost function operates on pairs of nodes. First, ‘empty’ nodes are
inserted in the source and destination trees so that the trees become isomorph.
Then, all pairs of nodes (n1, n2), (n1, null), and (null, n2) are compared and their
costs are summed. Figure 6.3 illustrates the source tree (Figure 6.3a), the destination
tree (Figure 6.3b), and the tree with the aligned node pairs (Figure 6.3c).

� Tree inclusion is defined to determine if a source tree T1 is included in a destination
tree T2 [155, 154]. Therefore, nodes from the destination tree are deleted until both

154 6 Classification of XML Documents

A

B C D

E G

F

A

B D

GF

A

B’ ID’

F H

G

Tree edit distance

Tree alignment

Tree inclusion

A

B C D

E G

F

A

B’ ID’

F H

G

(B,B’) (C,D’)

(A,A)

(D,I)

(θ,H)(θ,F)

(θ,G)

(E,θ)

(F,θ)

(G,θ)

A

B D

G

A

B ID

F H

G

A

B ID

F H

G

(a)

A

B C D

E G

F

A

B D

GF

A

B’ ID’

F H

G

Tree edit distance

Tree alignment

Tree inclusion

A

B C D

E G

F

A

B’ ID’

F H

G

(B,B’) (C,D’)

(A,A)

(D,I)

(θ,H)(θ,F)

(θ,G)

(E,θ)

(F,θ)

(G,θ)

A

B D

G

A

B ID

F H

G

A

B ID

F H

G

(b)

A

B C D

E G

F

A

B D

GF

A

B’ ID’

F H

G

Tree edit distance

Tree alignment

Tree inclusion

A

B C D

E G

F

A

B’ ID’

F H

G

(B,B’) (C,D’)

(A,A)

(D,I)

(θ,H)(θ,F)

(θ,G)

(E,θ)

(F,θ)

(G,θ)

A

B D

G

A

B ID

F H

G

A

B ID

F H

G

(c)

Figure 6.2: Tree Edit Distance

A

B C D

E G

F

A

B D

GF

A

B’ ID’

F H

G

Tree edit distance

Tree alignment

Tree inclusion

A

B C D

E G

F

A

B’ ID’

F H

G

(B,B’) (C,D’)

(A,A)

(D,I)

(θ,H)(θ,F)

(θ,G)

(E,θ)

(F,θ)

(G,θ)

A

B D

G

A

B ID

F H

G

A

B ID

F H

G

(a)

A

B C D

E G

F

A

B D

GF

A

B’ ID’

F H

G

Tree edit distance

Tree alignment

Tree inclusion

A

B C D

E G

F

A

B’ ID’

F H

G

(B,B’) (C,D’)

(A,A)

(D,I)

(θ,H)(θ,F)

(θ,G)

(E,θ)

(F,θ)

(G,θ)

A

B D

G

A

B ID

F H

G

A

B ID

F H

G

(b)

A

B C D

E G

F

A

B D

GF

A

B’ ID’

F H

G

Tree edit distance

Tree alignment

Tree inclusion

A

B C D

E G

F

A

B’ ID’

F H

G

(B,B’) (C,D’)

(A,A)

(D,I)

(θ,H)(θ,F)

(θ,G)

(E,θ)

(F,θ)

(G,θ)

A

B D

G

A

B ID

F H

G

A

B ID

F H

G

(c)

Figure 6.3: Tree Alignment

trees correspond or the number of nodes in T1 becomes larger than the number
of nodes in T2 thus demonstrating that T1 is no longer included in T2. Figure 6.4
sketches the process to check whether a source tree (Figure 6.4a) is contained in a
destination tree (Figure 6.4b) by successively deleting nodes (Figure 6.4c).

A

B C D

E G

F

A

B D

GF

A

B’ ID’

F H

G

Tree edit distance

Tree alignment

Tree inclusion

A

B C D

E G

F

A

B’ ID’

F H

G

(B,B’) (C,D’)

(A,A)

(D,I)

(θ,H)(θ,F)

(θ,G)

(E,θ)

(F,θ)

(G,θ)

A

B D

G

A

B ID

F H

G

A

B ID

F H

G

(a)

A

B C D

E G

F

A

B D

GF

A

B’ ID’

F H

G

Tree edit distance

Tree alignment

Tree inclusion

A

B C D

E G

F

A

B’ ID’

F H

G

(B,B’) (C,D’)

(A,A)

(D,I)

(θ,H)(θ,F)

(θ,G)

(E,θ)

(F,θ)

(G,θ)

A

B D

G

A

B ID

F H

G

A

B ID

F H

G

(b)

A

B C D

E G

F

A

B D

GF

A

B’ ID’

F H

G

Tree edit distance

Tree alignment

Tree inclusion

A

B C D

E G

F

A

B’ ID’

F H

G

(B,B’) (C,D’)

(A,A)

(D,I)

(θ,H)(θ,F)

(θ,G)

(E,θ)

(F,θ)

(G,θ)

A

B D

G

A

B ID

F H

G

A

B ID

F H

G

(c)

Figure 6.4: Tree inclusion

6

6.3 Tree Matching via Edit Distance 155

The focus of this work lies on the tree-based approach of metrics, and here especially on
the tree edit distance. The algorithm proposed by Nierman and Jagadish [187], which allows
to compute the edit distance between two trees using only the labels of the nodes, will be
modified. Whilst the former algorithm is structure-oriented, this research aims at inducing a
classifier that takes the structure and the content into account. The dynamical aspect of the
algorithm is kept, but it has been improved with respect to two dimensions: (1) the algorithm
will rely on simplified edit operations; (2) the algorithm will take the content match into
account when computing the edit distance. Concretely, a hybrid distance measure needs to
be formulated that combines structure-based and content-based distances. Each of these are
described in the following sections.

6.3.1 Structure Matching

To formulate the distance, some definitions of the basic concepts are introduced.

Definition 6.1 [Tree node]: A node n of a tree T is associated with a label λ(n), a content
γ(n), a parent node p ∈ T, and a set of child nodes ch(n). γ(n) is empty (null), if a node
does not have a content. The parent node p of the root node of T is null. The child nodes of n
are uniquely identified as n1, n2, . . . , nk, where k is the degree of n, denoted as deg(n).

Definition 6.2 [Ordered Tree]: An ordered tree T is defined as a rooted tree, where a left-to-
right order among the child nodes is significant. root(T) denotes the root node of T. The
children of T are the subtrees Ti rooted in nodes that are child nodes of root(T) (root(T)i =
root(Ti) and T1, T2, . . . , Tk, k = deg(root(T)). Further, |T| represents the total number of
nodes in tree T.

Based on the aforementioned definitions, the allowed basic edit operations can be described
as follows:

Definition 6.3 [Insert operation]: Given a tree T and a node p ∈ T, a node n can be inserted
into T as the ith child of the node p using the operation ins(T,n,p,i). The cost function of this
operation is Cins(T, n, p).

Definition 6.4 [Delete operation]: Given a tree T and a node n ∈ T as the ith child of node
p ∈ T, n can be removed using the operation del(T,n,p,i). The cost function of deletion is
Cdel(T, n, p).

Definition 6.5 [Alter operation]: Given two nodes n1 and n2 whose labels are λ(n1)
and λ(n2). The label of n1 can be replaced by the label of n2 using the operation
alt(n1, n2)(≡ λ(n1) ← λ(n2)). The cost function of this operation is Calt(n1, n2) defined as:

156 6 Classification of XML Documents

Calt(n1, n2) =

0 if λ(n1) = λ(n2)

β otherwise
(6.3)

Note that one can parameterize β so that altering a node lying at level l in the document
tree costs β(l). This seems reasonable for taking the depth of the tree and semantic closeness
between tags into account. Renaming section marking labels such as sec, ss1, ss2 or
paragraph labels such as p1, p2, p3 could result in cheaper costs because of their affiliation to
the same (semantic) group (related labels).

Figure 6.5 illustrates the basic operations that transform the source tree T1 into the
destination tree T2. In order to save space, no intermediate transformation steps are included.
Deleted nodes colored in red are marked in T1 only. Inserted nodes colored in green are
marked in T2 only. Altered nodes colored in blue are marked in both trees T1 and T2.
Additionally, altered nodes are primed for better discrimination. All other nodes are left
untouched. An edit script (see Definition 6.8) keeps track of all operations that transform T1

into T2.

EditScript
T1 → T2

match(T1,A,T2,A)
delete(T1,B)
insert(T2,E)

alter(T1,D,T2,D’)
match(T1,C,T2,C)

Source Tree T1 Destination Tree T2

A A

Source Tree T1 Destination Tree T2

EditScript
T1 → T2

match(T1,A,T2,A)
delete(T1,X)
delete(T1,Y)
delete(T1,Z)
delete(T1,B)
insert(T2,E)
insert(T2,U)
insert(T2,V)
insert(T2,W)

alter(T1,D,T2,D’)
match(T1,C,T2,C)

A

C D

A

C D’B E

B C D C E D’

X Y Z U V W

Figure 6.5: Basic tree edit operations and edit script

Furthermore, if Cins(T, n, p) = Cdel(T, n, p), the edit distance measure becomes symmetric.
One might think of unequal costs for insert and delete operations though. Thus, the similarity
of two document trees dist(T1, T2) and dist(T2, T1) differs. Assigning a higher cost to the
insert than to the delete operation may support a possible plagiarism identification. For
instance, two distances dist(T1, T2) = 3, 4 and dist(T2, T1) = 1, 2 might indicate that T1 and T2

are very similar (low distance), where it is easier to generate T1 by deleting contents from T2

than vice versa.

These operations are applied on nodes that can be either leaf nodes or inner nodes,
where an inner node is the root of a subtree. The cost of applying an operation on an inner
node is recursively computed by summing up the cost of applying the respective structure
modifications to its descendants. Hence, the following definitions of the cumulative costs (see
Figure 6.6, nodes B and E):

6

6.3 Tree Matching via Edit Distance 157

Definition 6.6 [Recursive delete]: The cumulative cost of deleting a subtree Sub from the tree
T at node p is CdelCum(T, Sub, p).

Definition 6.7 [Recursive insert]: The cumulative cost of inserting a subtree Sub into the tree
T at node p is CinsCum(T, Sub, p)

Both costs CdelCum and CinsCum are bottom-up computed as follows:
CdelCum(T, Sub, p) = Cdel(T, root(Sub), p) + ∑i CdelCum(T, Subi, root(Sub))

CinsCum(T, Sub, p) = Cins(T, root(Sub), p) + ∑i CinsCum(T, Subi, root(Sub))
(6.4)

In other words, at each node of the subtree Sub of the source (resp. destination) tree T1

(resp. T2), the cost of the recursive delete (resp. insert) operation is calculated by summing
the cost for deleting (resp. inserting) the single node root(Sub) with the cumulative cost of
deleting (resp. inserting) each of its children Subj. Obviously, the deletion of a subtree is done
bottom-up, while the insertion of a subtree is done top-down.

EditScript
T1 → T2

match(T1,A,T2,A)
delete(T1,B)
insert(T2,E)

alter(T1,D,T2,D’)
match(T1,C,T2,C)

Source Tree T1 Destination Tree T2

A A

Source Tree T1 Destination Tree T2

EditScript
T1 → T2

match(T1,A,T2,A)
delete(T1,X)
delete(T1,Y)
delete(T1,Z)
delete(T1,B)
insert(T2,E)
insert(T2,U)
insert(T2,V)
insert(T2,W)

alter(T1,D,T2,D’)
match(T1,C,T2,C)

A

C D

A

C D’B E

B C D C E D’

X Y Z U V W

Figure 6.6: Recursive tree edit operations and edit script

Having introduced some variables required, the edit distance between two trees T1 and T2

is computed using Algorithm 6.1. Based on dynamic programming, this algorithm constructs
a deg(root(T1))× deg(root(T2)) matrix of distance values between the nodes of the two trees.
First, the algorithm compares the root nodes of T1 and T2. This corresponds to an alter
operation (line 5) because root nodes can neither be inserted nor deleted. Then, as seen
in lines 7 and 10, the algorithm computes the distance values of inserting or deleting all
nodes given the roots of two trees. These values serve to trigger the dynamic computation of
cumulative costs, where each child of T1 is compared to each child of T2 recursively. Indeed,
a cell distMat[i][j] (i > 0 and j > 0) is assigned a cost that is computed using the content of
its neighboring three cells:

158 6 Classification of XML Documents

� the content of the upper left neighbor, distMat[i − 1][j− 1], is added to the distance
between the subtrees rooted at nodes ni and nj (i.e., Ti

1 and T j
2) (line 15). This case

corresponds to a match between node ni and node nj.

� the content of the left neighbor, distMat[i][j − 1], is added to the cost of inserting a
subtree T j

2 to the source tree (line 16). This case corresponds to an insertion of a subtree
rooted at node nj.

� the content of the upper neighbor, distMat[i− 1][j], is added to the cost of removing
a subtree Ti

1 from the source tree (line 17). This case corresponds to a removal of an
obsolete subtree rooted at node ni.

The minimum cost of these three alternatives is retained and stored in distMat[i][j].

Algorithm 6.1 Tree Edit Distance algorithm

1: procedure TreeDist(T1, T2)
2: int M = deg(root(T1))
3: int N = deg(root(T2))
4: int[][] distMat = new int[0..M][0..N]
5: distMat[0][0] = Calt(root(T1), root(T2))
6: for (j = 1 to N) do
7: distMat[0][j] = distMat[0][j-1] + CinsCum(T2, T j

2, root(T2))
8: end for
9: for (i = 1 to M) do

10: distMat[i][0] = distMat[i-1][0] + CdelCum(T1, Ti
1, root(T1))

11: end for
12: for (i = 1 to M) do
13: for (j = 1 to N) do
14: distMat[i][j] = min{
15: distMat[i-1][j-1] + dist(Ti

1, T j
2),

16: distMat[i][j-1] + CinsCum(T2, T j
2, root(T2)),

17: distMat[i-1][j] + CdelCum(T1, Ti
1, root(T1))

18: }
19: end for
20: end for
21: return distMat[M][N]
22: end procedure

The original algorithm proposed by Nierman and Jagadish outputs only the edit distance
between two trees. There is no way to reconstruct the optimal sequence of edit operations
that led to the obtained final edit distance. To overcome that, all possible edit scripts that
correspond to the minimal distance between the two trees are memorized. Therefore, an edit
script (see Figure 6.5, Figure 6.6, and Figure 6.7) is defined as follows:

6

6.3 Tree Matching via Edit Distance 159

Definition 6.8 [Edit Script]: An edit script δ is an ordered sequence of edit operations that
transform a source tree T1 into a destination tree T2.

In general, there exist more than a single edit script that correctly transform T1 into T2.
For instance, if the cost of an alter operation is equal to the cost of a delete and an insert
operation combined, both edit scripts achieve the same transformation cost. Further, edit
scripts that initially add an arbitrary number of nodes and delete the same nodes at the end
also carry out correct transformations. Therefore, a minimal edit script is defined as follows:

Definition 6.9 [Minimal Edit Script]: Let δ1, δ2, . . . , δm be a set of correct edit scripts trans-
forming T1 into T2. A minimal edit script is then defined as:

Mink=1..m{δk} = δi ⇐⇒ ∀δj | i 6= j,

dist(T1, T2)δi ≤ dist(T1, T2)δj (6.5)

where dist(T1, T2)δj
indicates the distance between T1 and T2 obtained after applying the

script δj. Note that there might be more than one minimal edit script for a pair of trees.

The above algorithm is further extended to calculate the minimal edit scripts for a (minimal)
edit distance. First suggestions for altering Nierman’s and Jagadish’s algorithm in this manner
come from Barnard et al. [25]. In addition to the distMat storing the cumulated edit distances
only, a separate entry in the matrix scriptMat keeps track of the possible minimal edit scripts.
After the algorithm finishes, distMat[deg(T1)][deg(T2)] contains the minimal edit distance
and scriptMat[deg(T1)][deg(T2)] the set of minimal edit scrips for the edit distance.

6.3.2 Content Matching

The second type of distance required is the content-based distance. To define it, this work still
relies on Algorithm 6.1. However, the previously used cost functions have to be redefined in
order to support the content match. Therefore, the notion of integer-valued costs is replaced
by float values, allowing to use common content similarity measures.

Let sim(γ(n1), γ(n2)) be an existing similarity function that compares the contents of two
nodes n1 and n2. This similarity can be computed by any information matching function.
Assume that this similarity measure is normalized so that it takes values in the unit interval
[0,1] (where sim = 0 means no match, sim = 1 indicates full match, and sim ∈]0, 1[means
partial match). Further, the following two definitions are needed:

sim(null, null) = 1 (6.6)

sim(null, γ(n2)) = sim(γ(n1), null) = 0 (6.7)

160 6 Classification of XML Documents

A

B C D

E

A

B HD

E

EditScript
T1 → T2

match(T1,A,T2,A)
match(T1,B,T2,B)

delete(T1,C)
match(T1,D,T2,D)
match(T1,E,T2,E)
alter(T1,F,T2,F)

insert(T2,H)

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

eeeeee
eeeeee
eeeeee
eeeeee

ffffffffffff
ffffffffffff
ffffffffffff
ffffffffffff

bbbbbb
bbbbbb
bbbbbb
bbbbbb

eeeeee
eeeeee
eeeeee
eeeeee

ffffffffffff
ffffffffffff
xxxxxx
xxxxxx

hhhhhh
hhhhhh
hhhhhh
hhhhhhF F

Figure 6.7: Content-based tree edit operations and edit script

Equation 6.6 stipulates that the content-based similarity of two nodes with empty content
is total (i.e., complete match), while Equation 6.7 stipulates that content-based similarity
between a node with a content and another node with empty content is 0.
The cost functions for inserting and deleting nodes with their contents are defined as:

CinsCon(n) = 1− sim(null, γ(n)) = 1− 0 = 1 (6.8)

CdelCon(n) = 1− sim(γ(n), null) = 1− 0 = 1 (6.9)

The cost of altering the content, CaltCon (Equation 6.10) is the sum of the cost of changing
the label Calt(n1, n2) (Equation 6.3) and the cost of altering the content, which is expressed as:

CaltCon(n1, n2) = Calt(n1, n2) + ρ ∗ (1− sim(γ(n1), γ(n2))) (6.10)

with ρ being a cost factor that scales up the dissimilarity of contents (since sim(γ(n1), γ(n2)) ∈
[0, 1], Calt(n1, n2) can be larger than 1).

Depending on a similarity threshold α, an alter operation becomes cheaper than a delete
operation and an insert operation combined. This can be reflected by a user-specified
parameter, α (0 ≤ α < 1). Precisely, if sim(γ(n1), γ(n2)) > α then CaltCon < (CdelCon + CinsCon)
(the alter is cheaper) and if sim(γ(n1), γ(n2)) < α then CaltCon > (CdelCon + CinsCon) (alter is
more expensive); otherwise, alter has the same cost as that of both delete and insert combined.
From this, the cost factor ρ is determined as follows:

ρ ∗ (1− α) = CdelCon(n1) + CinsCon(n2) (6.11)

leading to:

6

6.3 Tree Matching via Edit Distance 161

ρ =
CdelCon(n1) + CinsCon(n2)

(1− α)
(6.12)

Now, to take the content similarity into account Calt(root(T1), root(T2)) in Algorithm 6.1
(line 5) is substituted for CaltCon(root(T1), root(T2)). Figure 6.8 summarizes the behavior of
Algorithm 6.1. distMat[0][0] is initialized with the cost of altering A1 into A2. Row 0 is then
completed by cumulating the inserting costs. Also, column 0 is completed by cumulating the
pruning costs. The remaining cells are filled by the minimal cost after adding (1) the inserting
costs to the neighboring left cell, (2) the deleting cost to the neighboring upper cell, or (3) the
altering cost to the upper left cell. The final edit distance for transforming the source into the
destination tree can be found in the bottom right corner of the distance matrix. The minimal
edit script is computed in a separate scriptMat matrix.

A

C D

E F

A

HD

E F

EditScript
T1 → T2

match(T1,A,T2,A)
alter(T1,B,T2,B)

delete(T1,C)
match(T1,D,T2,D)
match(T1,E,T2,E)
match(T1,F,T2,F)

insert(T2,H)

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

eeeeee
eeeeee
eeeeee
eeeeee

ffffffffffff
ffffffffffff
ffffffffffff
ffffffffffff

bbbbbb
bbbbbb
bbbbbb
xxxxxx

eeeeee
eeeeee
eeeeee
eeeeee

ffffffffffff
ffffffffffff
ffffffffffff
ffffffffffff

hhhhhh
hhhhhh
hhhhhh
hhhhhh

A
6

B
1

C
1

D
3

A
6

1.3 2.35.0 4.3

0.0 1.0 4.0 5.0

1.0 0.3 3.3 4.3

2.0 1.3 4.3 5.3

B
1

Destination node
Graft cost

Source node
Prune cost

sim(B1,B2) = 0.7

D
3

H
1

BB

Figure 6.8: Tree edit distance algorithm matrix

One might note that the edit distance itself cannot be interpreted without a context, i.e.,
comparing two source documents with a single destination document, where one source
document is more similar to the destination document than the other. Anyway, this algorithm
provides a relative distance measure among XML documents based on their structure and
content, which can be applied easily for classification and clustering.

162 6 Classification of XML Documents

In order to allow such an interpretation, a normalization of the edit distances for two trees
can be defined as

distnormalized(T1, T2) =
dist(T1, T2)

maxDist(T1, T2)
(6.13)

where maxDist(T1, T2) = |T1| · CdelCon + |T2| · CinsCon defines the maximum edit distance,
calculated as deleting every node of T1 and inserting every node of T2. This definition allows
to compare edit distances by measuring the amount of changes needed, incorporating the
size of the compared documents.

6.4 Tree Matching via Content Matrix

So far, the focus has been on explicit consideration of the structure to compare documents. In
the sequel a more content-oriented matching procedure is suggested that uses the structure of
documents only implicitly. More expressively, the idea is to measure the similarity between
documents using only nodes with contents. Indeed, every node in the source tree is compared
to all nodes in the destination tree relying on a content similarity matrix (denoted Content
Matrix), where only nodes containing content are taken into account.

A cell contSim[i][j] refers to the similarity degree between the contents of the node ni in
the source tree and the node nj in the destination tree, i.e., contSim[i][j] = sim(γ(ni), γ(nj)).
One might define a two-step process to perform the comparison: If the labels of the nodes to
be compared are the same, then the contents of these nodes are compared. However, the first
step of this comparison can be optional at the discretion of the user via setting a flag variable
ζ. If ζ is set to true, the similarity of nodes with non-equal labels is set to 0.

Once the content similarity matrix, contSim, is filled, the distance between the corre-
sponding documents can be computed using an algorithm that traverses that matrix in a
single pass. Basically, three edit operations: insert, delete, and alter are applied. During the
computation, these operations are labeled either sa f e (certain) or unsa f e (uncertain) as shown
in Algorithm 6.2 and explained below. Basically the algorithm proceeds in two steps, (1)
computing the similarities and (2) marking the nodes according to the edit operations (item
numbers correspond to lines in Algorithm 6.2):

15: If simMat[i][j] = 1, then nodes n1,i and n2,j are both marked as sa f e_match with no
additional cost.

16: A source node, n1,i having no matching destination nodes (simMat[i][j] = 0, ∀j =
1 . . . |dest|) is marked as sa f e_delete. The cumulative cost is increased by the weighed
cost of sa f e_delete.

6

6.4 Tree Matching via Content Matrix 163

17: A destination node, n2,j with no corresponding source nodes (simMat[i][j] = 0, ∀i =
1 . . . |source|) is marked as sa f e_insert. The cumulative cost is increased by the weighed
cost of sa f e_insert.

18: An unmarked source node n1,i is marked as unsa f e_match along with one unmarked
destination node n2,j, if n2,j is the first node (minimal index j) fulfilling the condition
simMat[i][j] ≥ α, where α is a user-specified similarity threshold.

19: Any remaining unmarked source node, n1,i, (simMat[i][j] < α, ∀j = 1 . . . |dest|) are
marked as unsa f e_delete.

20: Any remaining unmarked destination node, n2,j, (simMat[i][j] < α, ∀i = 1 . . . |source|)
are marked as unsa f e_insert.

Algorithm 6.2 Content Matrix Distance algorithm

1: procedure ContentDist(T1, T2, ζ)
2: int M = |T1| /*only content nodes*/
3: int N = |T2| /*only content nodes*/
4: float[][] simMat = new float[0..M][0..N]
5: for (i = 1 to M) do
6: for (j = 1 to N) do
7: if (ζ = true and λ(n1) 6= λ(n2)) then
8: simMat[i][j] = 0
9: else

10: simMat[i][j] = sim(γ(n1,i), γ(n2,j))
11: end if
12: end for
13: end for
14:
15: check for sa f e_match
16: check for sa f e_delete
17: check for sa f e_insert
18: check for unsa f e_match
19: check for unsa f e_delete
20: check for unsa f e_insert
21:
22: return ∑ weighed_costs (based on marks)
23: end procedure

As in the tree edit distance approach, each of the edit operations is associated with a
certain cost. In addition, the labels [sa f e] and [unsa f e] can be weighed. Since the distance is
inversely proportional to the similarity, the transformation costs are calculated using the same
formula as applied in the tree edit distance approach taking dist(n1,i, n2,j) = 1, 0− contSim[i][j]

164 6 Classification of XML Documents

into account. The final distance between the documents is the sum of all of the (weighed)
operation’s costs. Clearly, the computation of the edit script is done in linear time and space
(since, there is no recursive computation).

Figure 6.9 shows how the algorithm works. All nodes containing content of the source
tree (B, C, E, F, and G in Figure 6.9a) are compared to all nodes containing content of the
destination tree (B, E, C′, G, and C′′ in Figure 6.9b). The corresponding similarity matrix
simMat is shown in Figure 6.9c. Additional data structures accelerate the identification of
[sa f e] matches (rowMatch), inserts (colEmpty), and deletes (rowEmpty). Also, rowSim keeps
track of the number of nodes exceeding the similarity threshold α. Figure 6.9d presents the
final costs for all nodes, which are 4, 1 in sum. A special case is the multiple matches of source
node C in the destination tree with C′ and C′′. It is resolved by matching C with the node
corresponding highest, C′′. As a single node is allowed to match only another single node,
node C′ automatically becomes marked as [unsa f e] insert.

Table 6.2 summarizes the described approaches, tree edit distance (TED) and content
matrix (CM), and their supported document editing operations.

Table 6.2: Comparison of tree edit distance and content matrix
Edit operations TED CM
insert + +
delete + +
alter + +
move edit script +
copy edit script +
deepening multiple matches multiple matches
flattening multiple matches multiple matches

6.5 Overview of k-NN

The k-NN algorithm [68, 210] serves for classifying documents into pre-existing classes. It is
based on the assumption that the classification of a sample is most similar to the classification
of other samples that are nearby in the space. In Figure 6.10 the unknown data point is
assigned to the red class, because 5 out of k = 7 nearest elements are assigned the red label.

Compared to other learning methods such as probabilistic classifiers, k-NN does not rely
on prior probabilities. Further, it is known for its effectiveness [262]. The main computation
task is to sort the training samples in order to find the k-nearest neighbors of a given query. It
is then straightforward to apply the k-NN algorithm for classifying XML documents.

Its application consists of collecting the set of N training documents XT =
{(x1, y1), (x2, y2), ..., (xN , yN)}, where xi are the XML documents and yi are the class la-
bels. This set is used as reference samples for the k-NN algorithm. To assign a label to

6

6.5 Overview of k-NN 165

A

B C D

E F
bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

eeeeee
eeeeee
eeeeee
eeeeee

ffffffffffff
ffffffffffff
ffffffffffff
ffffffffffff

G

ffffffffffff
ffffffffffff
ffffffffffff
ffffffffffff

(a) Source tree

A

B GC

E C’

C’’

bbbbbb
bbbbbb
bbbbbb
bbbbbb

eeeeee
eeeeee
eeeeee
eeeeee

cccccc
cccccc
c’c’c’c’
c’c’c’c’

cccccc
cccccc
cccccc
c’c’c’c’

gggggg
gggggg
gggggg
gggggg

(b) Destination tree

A

B C D

E F

A

B GC

E C’

C’’

= [safe] match

= [unsafe] match

[safe] delete

[safe] insert

[unsafe] delete

[unsafe] insert

type cost

0.0

destsource

1.0

1.0

=

=

=

=

0.1

1.0

1.0

bbbbbb
bbbbbb
bbbbbb
bbbbbb

cccccc
cccccc
cccccc
cccccc

eeeeee
eeeeee
eeeeee
eeeeee

ffffffffffff
ffffffffffff
ffffffffffff
ffffffffffff

bbbbbb
bbbbbb
bbbbbb
bbbbbb

eeeeee
eeeeee
eeeeee
eeeeee

cccccc
cccccc
c’c’c’c’
c’c’c’c’

cccccc
cccccc
cccccc
c’c’c’c’

gggggg
gggggg
gggggg
gggggg

B

C

E

F

B E C’ G C’’

0.00.7

0.1 1.0 0.3 0.0

0.0 0.0 0.0 0.0

0.9

0.0

0.0

1.0 0.00.00.2 0.0

0.1

ro
w

 E
m

pt
y

ro
w

 M
at

ch

ro
w

 S
im

0.0

- +- -col Empty -

[safe] match 0.0

=

G

ffffffffffff
ffffffffffff
ffffffffffff
ffffffffffff

G 0.2 0.1 0.3 0.0 0.1

S
ou

rc
e

tre
e

Destination tree

-

-

-

-

0

2

0

0

0

1

0

1

0

0

+

C’’

C’

G

B

E

B

C

E

F

G

(c) Similarity matrix (α = 0, 5)

= [safe] match

= [unsafe] match

[safe] delete

[safe] insert

[unsafe] delete

[unsafe] insert

type cost

0.0

destsource

1.0

1.0

=

=

=

=

0.1

1.0

1.0

[safe] match 0.0

=

C’’

C’

G

B

E

B

C

E

F

G

Sum 4.1

(d) Cumulated costs

Figure 6.9: Content matrix match

an unlabeled document (query), doc, the algorithm finds the k documents in the reference
samples (labeled documents) that are the closest to it. The label shared by the majority of
these k nearest neighbors is assigned to the query.

However, to apply k-NN an appropriate value of k needs to be chosen, since the perfor-
mance of the algorithm depends on this value.

Note that k-NN is a lazy learning algorithm because no model needs to be built a priori.
Moreover, despite its efficiency problems, k-NN is known to be one of the most effective
classification methods. Steps of the classification procedure via k-NN are summarized in
Algorithm 6.3. Once the unlabeled XML document set is assigned class labels, the classification

166 6 Classification of XML Documents

xi

Figure 6.10: k-Nearest Neighborhood classification

Algorithm 6.3 Classification via the k-NN algorithm

1: XL . . . labeled documents, C . . . number of classes such that
⋃

j Xj = XL, j = 1...C
2: XU . . . unlabeled documents
3: procedure k-NN(k)
4: for (i = 1 to |XU |) do //xi . . . unlabeled sample
5: for (j = 1 to |XL|) do //yj . . . labeled sample
6: dist[j] = sim(xi, yj)
7: end for
8: Sort dist[j] ascending
9: Select first k documents (∈ XL with smallest distance)

10: Assign xi the wining label cl that occurs most often among the k documents
11: If more than one label wins, randomly select one of them
12: end for
13: end procedure

accuracy can be computed. It measures how often the algorithm’s labeling decision meets the
actual labels of the documents.

6.6 Evaluation

In this section, several aspects to quantify the classification quality of XML documents
based on their content and structure are studied: How do different k values influence the
classification? What is the impact of training size on the classification performance? How does
content and structure matching perform compared to structure-only matching? All of these
issues were investigated using some real-world XML collections based on the movie database

6

6.6 Evaluation 167

(MovieDB) [65]) which were proposed in INEX 2005 [90]. Documents of these collections are
assigned to 11 classes. Basically, the XML collections are of two types:

� Structure-only (SO) collections containing only the structure of the XML documents.
These include four collections: m-db-s-0, m-db-s-1, m-db-s-2, m-db-s-3, where the last three
collections are noisy versions of the first one. The amount of noise and class overlap
increases from the first to the last collection. The collections come in the form of two
sets, a training and a testing set. The training documents of the m-db-s data sets are
organized in 11 categories, where each category corresponds to a movie genre. Table 6.3
summarizes the number of training and testing documents of each of the collections.

Table 6.3: Structure-Only corpora
Corpus Train/Test Train/Test Train/Test Train/Test Train/Test

10% 30% 50% 70% 100%
m-db-s-0 488/485 1.453/1.448 2.415/2.409 3.383/3.376 4.824/4.816
m-db-s-1 487/486 1.449/1.447 2.410/2.408 3.378/3.374 4.818/4.814
m-db-s-2 486/485 1.450/1.447 2.412/2.408 3.379/3.372 4.820/4.809
m-db-s-3 488/485 1.453/1.445 2.414/2.404 3.380/3.370 4.821/4.809

� Content-and-structure (CAS) collections consisting of the entire documents. This set
contains one collection, m-db-cs-1, that consists of 4.825 labeled documents assigned to
11 different categories. This set is split into 2.415 training and 2.410 testing documents.
Table 6.4 summarizes the number of training and testing documents of the collection.

Table 6.4: Content-and-Structure corpora
Corpus Train/Test mccTrain/Test Train/Test Train/Test Train/Test Train/Test

10% 20% 30% 50% 70% 100%
m-db-cs-1 247/246 488/486 730/728 1.210/1.208 1.696/1.692 2.415/2.410

To answer the questions formulated earlier, three sets of experiments are run. The first
two deal with the structure-only setting, while the last one is concerned with the content-
and-structure setting. A comparison of the results against some available results from other
authors is highlighted at the end of this section.

In all experiments, evaluation relies on the well-known classification accuracy [224, 14, 261],
that is how often the classifier’s decision meets the expert’s assignment. Formally it is defined
as:

Accuracy =
correctly classified testing docs

testing docs
(6.14)

168 6 Classification of XML Documents

In addition to the classification accuracy, recall and precision values [224] are computed
for comparison. Recall, Ri, and precision, Pi, for a class i are given as follows:

Ri =
correctly classified testing docs in class i

testing docs of class i
(6.15)

Pi =
correctly classified testing docs in class i

testing docs assigned to class i
(6.16)

The overall recall and precision of a classification can be computed using two different
methods: Micro averaging (Rmicro and Pmicro) sums over all individual decisions, thus gives
equal weight to each assignment. Macro averaging (Rmacro and Pmacro), instead, sums over all
classes, thus gives equal weight to each class. The formulae are given as follows:

Rmicro = ∑k
i=1 Ri · ni

n
(6.17)

Pmicro = ∑k
i=1 Pi · ni

n
(6.18)

Rmacro = ∑k
i=1 Ri

k
(6.19)

Pmacro = ∑k
i=1 Pi

k
(6.20)

ni is the number of documents assigned to class i, n is the total number of documents, and k
is the number of classes.

6.6.1 Experiment I - How Does k Affect the Accuracy?

As explained in Section 6.5, the size of the neighborhood (k) is a key parameter in the k-NN
algorithm. Therefore, one aspect to look at is to check the effect of k on the accuracy. For this
purpose, the values 3, 5, 7, 9, 15, and 21 are experimented. Note that, only the SO collections
are used and only a proportion (10%) of them is selected randomly and uniformly distributed
over the 11 classes to show the effect of k.

Using Algorithm 6.1 to run k-NN, and setting the required parameters to α = 0, 5
(Equation 6.12), Cdel = 1, 0 (Equation 6.4), Cins = 1, 0 (Equation 6.4), and β = 2, 0 (Equation 6.3,
β ≥ Cins + Cdel to avoid permanent node relabeling) respectively, the results displayed in
Table 6.5 and Figure 6.11 are obtained.

The outcome of the experiment is a 3-fold conclusion: (i) as k increases, the accuracy
of the algorithm monotonically decreases independently of the collection used (except for
k = 9 in m-db-s-1 and for k = 5 in m-db-s-3), (ii) the noise introduced in the m-db-s-1/2/3 has
negatively impacted the accuracy (as the amount of noise in relation to m-db-s-0 increases,
the accuracy decreases), and (iii) the maximum drop in the accuracy due to variation of k is

6

6.6 Evaluation 169

Table 6.5: Effect of k on the accuracy (Equation 6.14)
Corpus k = 3 k = 5 k = 7 k = 9 k = 15 k = 21 max. difference

m-db-s-0 0,922 0,920 0,918 0,903 0,892 0,889 3,3%
m-db-s-1 0,903 0,892 0,891 0,897 0,885 0,866 3,7%
m-db-s-2 0,874 0,868 0,858 0,849 0,802 0,790 8,4%
m-db-s-3 0,862 0,868 0,860 0,852 0,825 0,814 4,8%

0,760

0,800

0,840

0,880

0,920

0,960

3 5 7 9 11 13 15 17 19 21

Parameter k

A
cc

ur
ac

y

m-db-s-0 m-db-s-1 m-db-s-2 m-db-s-3

Figure 6.11: Effect of k on the accuracy

quite low, lying between 3,3% and 8,4% only (see last column of Table 6.5). Therefore, the
different values of k are retained in the remaining experiments since these results do not
allow to convincingly consider a particular k-value better than the others.

More interesting, the classifier provides very high accuracy results, but this remains
relative to the amount of documents used in this experiment.

6.6.2 Experiment II - How Does the Training Data Affect the Accuracy?

k-NN uses a set of training samples as a basis to label unseen documents. Hence, it is clear
that the size of the training set is crucial for the accuracy of the algorithm. To observe the
effect of increasing the size of the training data set, the m-db-s-0 collection is split into five
ratios (10%, 30%, 50%, 70%, 100%). These ratios are randomly and uniformly selected among
the whole training data so that every chunk contains all labels.

Using the same setting as described in Section 6.6.1, the results shown in Table 6.6 and
Figure 6.12 are obtained. Unexpectedly, the size of the training set had no large impact on the
accuracy of the classifier (see the last column of the table). There is an extremely weak trend
that a larger training set improves performance. The reason might lie in the inter-document
similarity, meaning that the classes are highly homogeneous. Furthermore, the accuracy

170 6 Classification of XML Documents

remains in the same range of values (regardless of the k value) without noticeable fluctuations
when increasing the size of the training data.

Table 6.6: Effect of the training data on the accuracy
Corpus k = 3 k = 5 k = 7 k = 9 k = 15 k = 21 max. difference

10% 0,922 0,920 0,918 0,903 0,892 0,889 3,3%
30% 0,928 0,925 0,934 0,932 0,930 0,930 0,9%
50% 0,924 0,929 0,928 0,929 0,929 0,924 0,5%
70% 0,934 0,933 0,932 0,930 0,930 0,932 0,4%

100% 0,934 0,934 0,932 0,932 0,929 0,931 0,5%

0,880

0,890

0,900

0,910

0,920

0,930

0,940

3 5 7 9 11 13 15 17 19 21

Parameter k

A
cc

ur
ac

y

10 % 30 % 50 % 70 % 100 %

Figure 6.12: Effect of the training data on the accuracy

6

6.6 Evaluation 171

6.6.3 Experiment III - How Does the CAS Setting Affect the Accuracy?

To check the effectiveness of the approach taking both the content and the structure of XML
documents into account, the CAS collection (m-db-cs-1) described earlier is used and five
methods are applied. These methods include:

Method Description

BM A Boolean model [21] is applied as in traditional information retrieval, where documents

are represented as a bag of words and where structure is neglected.

TED_SO* Tree edit distance based on structure-only matching (see Section 6.3.1). Parameters are

set to α = 0, 5, β = 2, 0, Cdel = 1, 0, and Cins = 1, 0.

TED_CAS Tree edit distance based on content-and-structure matching (see Section 6.3.2). Parame-

ters are set to α = 0, 5, β = 2, 0, Cdel = 1, 0, and Cins = 1, 0.

CM_match Content matrix matching where node labels are considered during comparison (see

Section 6.4).

CM_any Content matrix matching where node labels are ignored during comparison (see Sec-

tion 6.4).

TED_CM A combination of tree edit distance based on structure-only matching (TED_SO) and

content matrix matching where node labels are ignored (CM_any). Although CM_match

outperforms CM_any, it was not combined with TED_CM. This was because both meth-

ods, CM_match and TED_SO, are structure-oriented, which would have given unfair

weight to structural similarity. The final distance of two document trees is computed as

α · TED_SO + (1− α) · CM_any, where α=0, 5
* Note that the TED_SO method does not use the document contents, but it is included here for the purpose of

comparison.

These methods are run on 20% of m-db-cs-1 to obtain the results displayed in Table 6.7 and
Figure 6.13.

Table 6.7: Effect of CAS on the accuracy
Approach k = 3 k = 5 k = 7 k = 9 k = 15 k = 21

BooleanModel 0,327 0,352 0,352 0,331 0,335 0,313
TED_SO 0,916 0,907 0,895 0,895 0,856 0,860
TED_CAS 0,652 0,634 0,640 0,673 0,584 0,558

CM_match 0,352 0,360 0,305 0,309 0,296 0,272
CM_any 0,130 0,163 0,175 0,160 0,134 0,140

TED_SO+CM_any 0,909 0,907 0,897 0,893 0,862 0,860

Although m-db-cs-1 and m-db-s-0 are different form each other, the accuracy of TED_SO
on both collections (when using the structure only) is nearly the same and exceeds 90%
accuracy. More surprising is the fact that the BM, CM_match, and CM_any methods perform
worse. Furthermore, comparing the tree-edit methods TED_CAS and TED_SO, it is worth
concluding that the content deteriorates the accuracy. Indeed the difference in the accuracy

172 6 Classification of XML Documents

0

0,2

0,4

0,6

0,8

1

3 5 7 9 15 21

Parameter k

A
cc

ur
ra

cy

BooleanModel TED_SO TED_CAS CM_match CM_any TED_SO+CM_any

Figure 6.13: Effect of CAS on the accuracy

values of the two methods are significant: 26% (k = 3), 27% (k = 5), 25% (k = 7), 22%
(k = 9), 23% (k = 15), and 31% (k = 21). This is also true when ignoring the structure entirely,
as with the BM method or when using the content matrix described in Algorithm 6.2 and
relying on CM_match and CM_any. The accuracy deterioration in this case is much worse.
More consistent with the expectations, a combination of TED_SO and CM_any, which results
in TED_CM, obtains best classification results regarding the content and the structure of
document trees. It considers the content while assuring high classification accuracy of the
structure-oriented method.

It is clear from these experiments that the XML documents classification is more influenced
by the document’s structure than by its content. However, this could be true only for particular
collections where the content is relatively poor as is the case of the MovieDB.

6.6.4 Comparison

Because a range of methods is provided, it is relevant to check how these methods compare
to the state-of-art methods that have been applied on the same collection. To do that, two
references appearing in the INEX 2005 workshop are considered. The first is by Hagenbuchner
et al. [118] who applied contextual self-organizing maps for structured data (CSOM-SD) to
classify XML documents, and the second is by Candillier et al. in [43] who applied inductive
decision trees (IDT).

To compare these methods against those proposed in this work, the same evaluation
metrics, accuracy, recall, and precision (at the macro and micro levels) [224] as shown in

6

6.7 Future Extensions 173

Table 6.8 have to be used. Note that just the best performance rates achieved by each method
are considered.

Table 6.8: Classification Comparison for m-db-s-0
Approach Accuracy Micro Recall Macro Recall Micro Precision Macro Precision
CSOM-SD 0,873 -* -* -* -*

IDT -* 0,968 0,960 -* -*

TED_CM 0,934 0,934 0,934 0,937 0,911
* ’-’: means value not available

The results illustrate that TED_CM largely outperforms CSOM-SD in terms of accuracy by
a rate difference of 6%. However, when considering micro and macro-recall, the IDT approach
performs better than TED_CM. Unfortunately, recall without precision is not much telling.
The precision values achieved by TED_CM are very encouraging especially when taking recall
values into account.

6.7 Future Extensions

The algorithms for computing the edit distance of two document trees lack an intuitive
applicability of standard document editing. Altering a document is generally performed
by applying more complex transformations than the basic operations mentioned above [25].
Operations like inserting or deleting whole subtrees (e.g., chapters), moving of structures, and
changing of contents have to be considered. Therefore, altering, merging, splitting, raising,
and lowering of contents or parts of contents is of importance. Some of these operations can
be modeled using combinations of the basic operations, where the main focus lies on the
content of a node (i.e., merging of nodes contents).

Incorporating such additional operations in the edit distance algorithm would increase the
computational complexity by far, leading to unacceptable runtime performance. According to
Barnard [25] these kinds of transformation operations should be handled as a post-processing
task of the minimal edit scripts. Here, the inherent order of the edit operations and proper
node matching strategies can be exploited, which allows a substitution of basic operations by
more elaborated ones:

� deleteTree(Ti, n, p): If all descendant nodes of a node are deleted, the delete operations
can be replaced by a single deleteTree operation, where p is the parent of the deleted
subtree rooted in node n in the document tree Ti.

� insertTree(Ti, n, p, j): If all descendant nodes of a node are inserted, the insert trans-
formations can be replaced by a single insertTree operation, where p is a parent node
where node n is inserted as the j-th child in the document tree Ti.

174 6 Classification of XML Documents

� moveTree(Ti, nold, pold, nnew, pnew, j): Utilizes a combination of deleteTree(Ti, nold, pold)
and insertTree(Ti, nnew, pnew, j).

� moveNode(Ti, n, p, j): Moves the node n to the j-th child of node p in the document
T − i. More elaborated move operations may include raiseChild and lowerChild.

� moveContent(Ti, n1, n2): Deletes the content of node n2 and appends it to the content of
node n1 in the document tree Ti.

These additional operations reflect document authoring tasks better than the basic edit
operations for inserting, deleting, and altering of single nodes. Different changes could be
weighted differently, which allows to focus on operations at a higher level. At the same time,
handling of these operations in a post processing step keeps up its processing performance.

6.8 Summary

This chapter discusses an XML classification approach based on the k-nearest neighborhood
algorithm which relies on edit distance measures. The originality of the approach lies in the
edit distance similarity which considers both, the content and structure of XML trees. Initial
results indicate that the approach proposed is very promising on both tasks, structure-only
and content-and-structure matching. One of the main findings is that the structure bears
more weight than the content does. However, a combination of two methods among the
proposed ones allows to tune the weight of both the content and the structure. Further
empirical work using other document collections is certainly needed. Especially in the context
of structured document retrieval, the benefits of automatic classification of documents or
parts of documents have to be investigated.

7

Chapter 7 If you want truly to understand something, try to change it.

Kurt Lewin

Clustering of XML Documents

Unsupervised clustering is a means to organize documents into groups of similar documents,
called clusters, automatically. These clusters can be exploited for information retrieval in two
ways: restriction of search space, and improvements of retrieval performance because of inter-
document similarities. Several methodologies have been applied in the context of unstructured
document retrieval, including neural networks, genetic algorithms, or genetic programming.
Unfortunately, there is only little work done on the adaptation of these techniques to fit
the structured document retrieval paradigm. In this chapter a new approach for clustering
structured documents is proposed. Clusters are represented in form of supertrees that
comprise the features of all documents assigned to a cluster. The approach is evaluated with
the INEX corpus used in 2005.

7.1 Introduction

Whereas document classification assigns documents to predefined classes, document clus-
tering discovers new classes – in this context called clusters – on its own. This is a major
advantage, because creating a detailed classification framework (e.g., a hierarchy of classes)
consumes much time and cost. Clustering, instead, identifies relationships among documents
based on their similarity to each other. The goal is to group similar documents in the same
cluster. This feature can be exploited for information retrieval: Due to the cluster hypoth-
esis [246, 69, 249] “closely associated documents tend to be relevant to the same requests”.
In contrast of comparing a user query to thousands of documents, a query is compared
to a much lower number of document clusters. Documents lying in relevant clusters are
returned to the user, who eventually adds additional constraints to refine the result. Another
advantage is a browsable hierarchy of clusters. Although clusters cannot be meaningfully
named automatically, it allows to restrict searches to subsets of similar documents. Thus,
retrieval becomes more effective, as well as more efficient.

175

176 7 Clustering of XML Documents

Besides the content of documents, the logical structure provides important information
that can be exploited by a clustering machinery. This latter is a significant mechanism in
the context of XML retrieval, because the number of XML components highly outnumbers
the number of documents in flat retrieval systems. Therefore, reducing the number of
comparisons needed to answer user queries is crucial for retrieval systems.

As with classification, clustering of XML components can be basically done in three ways:
(1) using exclusively the textual content, (2) using exclusively the structure, and (3) using both,
content and structure, in a hybrid manner. The previous chapter showed that classification
is more influenced by the document’s structure than by its content. However, applying
clustering for information retrieval, the content being searched must be incorporated. Thus,
the focus of this work rests on the latter approach.

Two different clustering approaches, the k-Means clustering algorithm [169, 199, 147] and
a hierarchical clustering algorithm [97] are applied. Both approaches, which are explained
later, depend on an appropriate cluster representation. Therefore, a new supertree approach
is proposed. The supertree representation of a document cluster contains the combined
information of all documents that are assigned. In order to compute the similarity of a
document and a cluster, the supertree is searched if the document is somehow included in it.
This chapter presents the formulae that are needed to calculate the similarity of an ordered
or unordered document and a supertree. This similarity computation incorporates both, the
content and the structure of the documents.

The remaining chapter is organized as follows. First, related work about clustering of XML
documents is reviewed in Section 7.2. The proposed supertree representation is described
in Section 7.3. The similarity computation of documents and supertrees are covered in
Section 7.4. The two clustering approaches are presented in Section 7.5. In Section 7.6, an
experimental evaluation of the proposed approaches is outlined. Finally, some remarks
conclude this chapter.

7.2 Related Work

In [57], a clustering approach based on structural similarities of XML documents is devised.
As in most prototype-based clustering algorithms, the problem is to find an XML cluster
representative for each cluster. This prototype is an XML document that encloses the structural
commonalities of documents assigned to its cluster. In other words, a cluster’s prototype is
a proper overlap among all the documents within that cluster. Departing from the cluster
hypothesis, such a prototype-based approach is worth applying in the context of XML
retrieval.

7

7.2 Related Work 177

The approach relies on agglomerative hierarchical clustering. Initially, all XML documents
form the set of single element cluster centers. These are iteratively compared and the pair with
smallest distance is aggregated to form a new cluster with a new prototype. The aggregation
process continues until all XML documents have been merged into a single cluster. The
basic problems with this approach are the definition of a distance measure to perform the
comparison between pairs of clusters and the aggregation operation on the prototypes of
clusters having high structural similarity. As to the distance measure, the authors have used a
derived distance from the Jaccard coefficient:

dist(d1, d2) = 1− |path(d1) ∩ path(d2)|
max{|path(d1)|, |path(d2)|}

where path(di) indicates the set of structural paths in the document di. The second aspect of
the algorithm is the aggregation procedure which consists of three steps: matching, merging,
and pruning. Matching aims at building a common subtree out of the pair of prototypes
of the selected least dissimilar clusters. The merge operation aims at uniting the pair of
prototypes which can also be obtained using the matching tree. Pruning aims at discarding
nodes from the merge tree such that the distance between the refined merge tree and all
documents gets minimal.

In [71], a clustering approach based on time series is presented. There, the structure of
an XML document is represented as a time series. Each occurrence of a node label (tag)
is modeled as an impulse. The clustering algorithm uses the frequencies of the Fourier
transform of the resulting time series to group similar documents into clusters.

In [163], a hierarchical clustering algorithm is applied to cluster XML documents based on
their structure. This algorithm, originally proposed in [114, 115] under the name ROCK, uses
the Jaccard coefficient to compute the similarity between two documents in terms of overlap
between their sets of elements. At the heart of the ROCK algorithm, a criterion function that
relies on the Jaccard coefficient is maximized so that strongly overlapping documents will be
assigned to the same cluster.

Dalamagas et al. [60] provide a nice overview on the application of edit distance in
the context of XML similarity. The paper summarizes some of the known edit-distance
algorithms [225, 266, 49, 47] which are dedicated to ordered trees. It also proposes a similar
algorithm to that presented in [47]. This latter is then used to perform a single link hierarchical
clustering of XML documents relying on the minimum spanning tree technique. There, the
weights on the edges correspond to the structural distance computed by the edit-distance
algorithm.

In [43], a divisive hierarchical algorithm is proposed to classify and/or cluster XML
documents. The algorithm uses five sets of attributes (tags, relationship of type parent-child,

178 7 Clustering of XML Documents

relationship of type next-sibling, node positions, paths starting from the root). During the
split of a cluster, the relevance of this operation is measured using a quality criterion on each
attribute set. Such a criterion, called interest, is the ratio of the log-likelihood of the partition
with two clusters to the same partition but only with one cluster.

Francesca et at. [78] propose a method to efficiently compute a cluster representative from
a set of XML documents. Their approach includes three computation steps, matching tree
computation, merging of matching trees, and pruning. Based on a nodes’ name, depth level,
and parent node relation, meaningful matches between two document trees are identified
recursively. The process starts at the leaf nodes of the documents, identifying the set of
common XML paths up to the roots. The tree that consists of the common paths is called
matching tree, reflecting the common skeleton of both documents. Initially, each document
forms a single cluster. Relying on an edit distance, the most similar pair of clusters is merged.
The merged cluster representative is then given by the matching tree of the two initial clusters.
Final cluster representatives are obtained by pruning the least frequent nodes. Therefore,
each leaf node is tried to be removed from the cluster without decreasing the distance to the
unpruned tree. If the distance is not dropping, the current node is pruned. The process ends
if no further nodes can be removed. The work proposed focuses on structure-based clustering,
thus no content is considered. Further, two documents with different root nodes (different
labels) cannot be merged into a cluster representative.

7.3 Supertree Representation

This work relies on the definition of a supertree, S, to represent the center of a cluster. Thus,
the supertree contains the structural information and textual content of all documents that
form the cluster. This set of documents is denoted as C. The supertree S is an augmented tree
and includes information about:

� An artificial Root′ node to which different root nodes of individual documents from C
are attached. Let this be called ‘super-root’. This node is flagged with the number of
documents in C, denoted as f req.

� Document-related nodes, N, (represented as ellipses) which occur in individual doc-
uments. A document-related node, Nk ∈ N, is defined by a label lab = γ(Nk) and a
content λ(Nk). For instance, node A′ and C′ in Figure 7.1 are document-related nodes
in S . In addition, such nodes are flagged with f req, the number of their occurrence in
the set of documents, C, that form S . For the sake of distinction, nodes of the supertree
are primed (i.e., node A′ in the supertree corresponds to a node A in a document). The
content of a document-related node in the supertree is obtained by means of a content

7

7.3 Supertree Representation 179

merge operation (of the representations) applied on the corresponding nodes in the
documents.

� Descriptive nodes, D, (graphically represented as rectangles) lying on the outgoing
edges (downwards) specify some statistical information about the parental relationship
between the interconnected nodes. Let A′ be the parent node of B′ in the supertree, S.
The corresponding descriptive node, Dj, contains:

� an ordinal number indicating that B appears as the ith child of A, called ord.

� the number of times the node B (corresponding to B′) appears as the ith child of A
in the set of documents, C, that form S. This number is referred to as f req.

Note that the 0th descriptive node indicates how many times the corresponding (parent)
document-related node has no children. The descriptive node attached to the ‘super-root’
contains only ord = 1st with the same f req as that of ‘super-root’, meaning that each
XML document must have a root node.

For the sake of illustration, Figure 7.1 shows a supertree example created from five
documents (as indicated by f req = 5 of the ‘super-root’). In three documents A occurs as a
root node, and the remaining two documents are rooted in B. As shown, node A appears
once without children (ord = 0th), with a first child (ord = 1st) twice (either B or C, both
without further children), and with a second child (ord = 2nd) once (only D). In the figure,
f req = 3 of node A′ is not equal to the sum of f reqs of the descriptive child nodes (= 4). This
is explained implicitly by the definition of the descriptive nodes, where the existence of a 2nd

child implies the existence of a 1st child.

ord = 0th

freq = 1
ord = 1st

freq = 2
ord = 2nd

freq = 1

lab = B’
freq = 1

lab = D’
freq = 1

lab = C’
freq = 1

lab = A’
freq = 3

ord = 1st

freq = 5

Root’
freq = 5

lab = B’
freq = 2

ord = 0th

freq = 1
ord = 0th

freq = 1
ord = 0th

freq = 1

Document-related
nodes Descriptive nodes

Super-root

Figure 7.1: Excerpt of a supertree

180 7 Clustering of XML Documents

The proposed supertree representation has the following features:
� XML documents with different root nodes can be represented in a single supertree.
� The order of documents merged is irrelevant.
� An individual document can be removed from the supertree provided that the content of

its nodes can be recovered from the document-related node’s contents of the supertree.
� Relying on merge and removal operations, supertrees can easily be restructured without

the need for creating new representatives starting from scratch.
� Supertrees can be merged and/or split in order to perform a hierarchical clustering of

both types agglomerative and divisive.
� Adding/removing documents from the supertree is linear in time and space. Thus, it

can be computed efficiently.
� Supertrees are efficiently compared to documents and other supertrees, as described in

the next section.
This work adopts the supertree representation for clustering complete documents, where

supertrees are created from the XML-structured document trees. The same approach is
also applicable for clustering subtrees of documents (e.g., all sections at the same level, all
paragraphs, etc.).

7.3.1 Creation of a Supertree

In order to build the supertree from a set of documents, the documents are incrementally
added. Hereby, the order of documents added is not significant. Figures 7.2 depicts how
documents d1, d2, and d3 are bound to the supertree S. The ⊕ operation indicates the merge
of a new document d with an existing supertree S. The labels of document-related nodes
and ordinal numbers of descriptive nodes are written in bold letters. The number in brackets
refers to f req.

7.3.2 Merging of Supertrees

Supertrees contain pure statistical information about the structure and the content of a set of
documents. Thus, not only additional documents but also other supertrees can be integrated
in an existing supertree. This is the basic requirement for applying hierarchical clustering,
which is described in Section 7.5.2. Clustering of documents or parts thereof partitions the set
of input XML trees into disjunct clusters. Thus, the assumption that documents are included
exclusively in one of the two supertree representations is valid. This fact allows to define the
merging process as a cumulation of structural statistics and content merges.

Merging one supertree ST1 with another supertree ST2 is done by a single preorder
traversal of the second supertree ST2. No difference between document-related nodes and
descriptive nodes is made. Each node N2,j of ST2 is compared to each node N1,i of ST1. If

7

7.3 Supertree Representation 181

A

B C

D D

sim(X) = (1/1)struct*(0/1)label*[1/2*sim(B) + 1/2*sim(C)] = 1*0*[1/2*1 + 1/2*1/2] = 0
sim(B) = (0/0)struct*(0/0)label = 0
sim(C) = (0/0)struct*(0/0)label = 0

sim(A) = (1/1)struct*(1/1)label*[1/3*sim(B)+1/3*sim(B)+1/3*sim(C)] = 1*1*[1/3*1+1/3*1/2+1/3*1/2] = 1/3 + 1/6 + 1/6 = 2/3
sim(B) = (1/1)struct*(1/1)label = 1
sim(B) = (1/1)struct*(0/1)label = 0
sim(C) = (0/1)struct*(0/0)label*[1/1*sim(D)] = 0*[1*0] = 1*1/2*1 = ½
sim(D) = 0/0*0/0 = 0

sim(A) = (1/1)struct*(1/1)label*[1/2*sim(B)+1/2*sim(C)] = 1*1*[1/2*1 + 1/2*1] = 1*1 = 1
sim(B) = (1/1)struct*(1/1)label = 1
sim(C) = (1/1)struct*(1/1)label*[1/2*sim(D)+1/2*sim(D)] = 1*1*[1/2*1 + 1/2*1] = 1*1*1 = 1
sim(D) = 1/1*1/1 = 1
sim(D) = 1/1*1/1 = 1

A

B C

D D

A

B C

D

B

X

B C

Root’ (1)

1st (1)

A’ (1)

0th (0) 1st (1) 2nd (1)

B’ (1) C’ (1)

D’ (1) D’ (1)

0th (1) 0th (0) 1st (1) 2nd (1)

0th (1) 0th (1)

(a) Document d1

A

B C

D D

sim(X) = (1/1)struct*(0/1)label*[1/2*sim(B) + 1/2*sim(C)] = 1*0*[1/2*1 + 1/2*1/2] = 0
sim(B) = (0/0)struct*(0/0)label = 0
sim(C) = (0/0)struct*(0/0)label = 0

sim(A) = (1/1)struct*(1/1)label*[1/3*sim(B)+1/3*sim(B)+1/3*sim(C)] = 1*1*[1/3*1+1/3*1/2+1/3*1/2] = 1/3 + 1/6 + 1/6 = 2/3
sim(B) = (1/1)struct*(1/1)label = 1
sim(B) = (1/1)struct*(0/1)label = 0
sim(C) = (0/1)struct*(0/0)label*[1/1*sim(D)] = 0*[1*0] = 1*1/2*1 = ½
sim(D) = 0/0*0/0 = 0

sim(A) = (1/1)struct*(1/1)label*[1/2*sim(B)+1/2*sim(C)] = 1*1*[1/2*1 + 1/2*1] = 1*1 = 1
sim(B) = (1/1)struct*(1/1)label = 1
sim(C) = (1/1)struct*(1/1)label*[1/2*sim(D)+1/2*sim(D)] = 1*1*[1/2*1 + 1/2*1] = 1*1*1 = 1
sim(D) = 1/1*1/1 = 1
sim(D) = 1/1*1/1 = 1

A

B C

D D

A

B C

D

B

X

B C

Root’ (1)

1st (1)

A’ (1)

0th (0) 1st (1) 2nd (1)

B’ (1) C’ (1)

D’ (1) D’ (1)

0th (1) 0th (0) 1st (1) 2nd (1)

0th (1) 0th (1)

(b) Supertree S = d1

A

B C

D

B

A

B C

D D

A

B C

D

B

X

B C
sim(X) = (2/2)struct*(0/2)label*[1/2*sim(B) + 1/2*sim(C)] = 1*0*[1/2*1 + 1/2*1/2] = 0
sim(B) = (2/2)struct*(2/2)label = 1
sim(C) = (2/2)struct*(1/2)label = 1/2

sim(A) = (2/2)struct*(2/2)label*[1/2*sim(B) + 1/2*sim(C)] = 1*1*[1/2*1 + 1/ 2*1/2]) = 1/2+1/4 = 3/4
sim(B) = (2/2)struct*(2/2)label = 1
sim(C) = (2/2)struct*(1/2)label*[1/2*sim(D) + 1/2*sim(D)] = 1*1/2*[1/2*1 + 1/2*1] = 1*1/2*1 = 1/2
sim(D) = 1/1*1/1 = 1
sim(D) = 1/1*1/1 = 1

sim(A) = (2/2)struct*(2/2)label*[1/3*sim(B)+1/3*sim(B)+1/3*sim(C)] = 1*1*[1/3*1+1/3*1/2+1/3*1/2] = 1/3 + 1/6 + 1/6 = 2/3
sim(B) = (2/2)struct*(2/2)label = 1
sim(B) = (2/2)struct*(1/2)label = 1/2
sim(C) = (1/2)struct*(1/1)label*[1/1*sim(D)] = 1*1/2*[1*1] = 1*1/2*1 = ½
sim(D) = 1/1*1/1 = 1

Root’ (2)

A’ (2)

C’ (1)

D’ (1)

B’ (2) B’ (1)C’ (1)

D’ (1)

1st (2)

0th (0) 2nd (2)1st (2)

0th (2)

3rd (1)

0th (0) 1st (1)

0th (1)

2nd (1)

D’ (1)

0th (1)

0th (1) 0th (0) 1st (1)

0th (1)

(c) Document d2

A

B C

D

B

A

B C

D D

A

B C

D

B

X

B C
sim(X) = (2/2)struct*(0/2)label*[1/2*sim(B) + 1/2*sim(C)] = 1*0*[1/2*1 + 1/2*1/2] = 0
sim(B) = (2/2)struct*(2/2)label = 1
sim(C) = (2/2)struct*(1/2)label = 1/2

sim(A) = (2/2)struct*(2/2)label*[1/2*sim(B) + 1/2*sim(C)] = 1*1*[1/2*1 + 1/ 2*1/2]) = 1/2+1/4 = 3/4
sim(B) = (2/2)struct*(2/2)label = 1
sim(C) = (2/2)struct*(1/2)label*[1/2*sim(D) + 1/2*sim(D)] = 1*1/2*[1/2*1 + 1/2*1] = 1*1/2*1 = 1/2
sim(D) = 1/1*1/1 = 1
sim(D) = 1/1*1/1 = 1

sim(A) = (2/2)struct*(2/2)label*[1/3*sim(B)+1/3*sim(B)+1/3*sim(C)] = 1*1*[1/3*1+1/3*1/2+1/3*1/2] = 1/3 + 1/6 + 1/6 = 2/3
sim(B) = (2/2)struct*(2/2)label = 1
sim(B) = (2/2)struct*(1/2)label = 1/2
sim(C) = (1/2)struct*(1/1)label*[1/1*sim(D)] = 1*1/2*[1*1] = 1*1/2*1 = ½
sim(D) = 1/1*1/1 = 1

Root’ (2)

A’ (2)

C’ (1)

D’ (1)

B’ (2) B’ (1)C’ (1)

D’ (1)

1st (2)

0th (0) 2nd (2)1st (2)

0th (2)

3rd (1)

0th (0) 1st (1)

0th (1)

2nd (1)

D’ (1)

0th (1)

0th (1) 0th (0) 1st (1)

0th (1)

(d) Supertree S = d1 ⊕ d2

X

B C

X’ (1)

B’ (1) C’ (1)

A

B C

D D

A

B C

D

B

X

B C

sim(A’,A) = (3/3)struct*(2/3)label*[1/4*sim(B’,B)+3/4*sim(C’,C)] = 5/12
sim(B’,B) = (2/2)struct*(2/2)label*1.0 = 1
sim(C’,C) = (2/2)struct*(1/2)label*1.0*[1/2*sim(D’,D)+1/2*sim(D’,D)] = 1/2
sim(D’,D) = 1/1*1/1*1.0 = 1
sim(D’,D) = 1/1*1/1*1.0 = 1

sim(A’,A) = (3/3)struct*(2/3)label*1.0*[1/3*sim(B’,B)+1/3*sim(B’,B)+1/3*sim(C’,C)] = 4/9
sim(B’,B) = (2/2)struct*(2/2)label*1.0 = 1
sim(B’,B) = (2/2)struct*(1/2)label*1.0 = 1/2
sim(C’,C) = (1/2)struct*(1/1)label*1.0*[1/1*sim(D)] = 1/2
sim(D’,D) = 1/1*1/1*1.0 = 1

sim(X’,X) = (3/3)struct*(1/3)label*1.0*[1/2*sim(B’,B)+1/2*sim(C’,C)] = 1/3
sim(B’,B) = (1/1)struct*(1/1)label*1.0 = 1
sim(C’,C) = (1/1)struct*(1/1)label*1.0 = 1

Root’ (3)

A’ (2)

C’ (1)

D’ (1)

B’ (2) B’ (1)C’ (1)

D’ (1)

1st (3)

0th (0) 2nd (2)1st (2)

0th (2)

3rd (1)

0th (0) 1st (1)

0th (1)

2nd (1)

D’ (1)

0th (1)

0th (1) 0th (0) 1st (1)

0th (1)

0th (0) 1st (1) 2nd (1)

0th (1)0th (1)

(e) Document d3

X

B C

X’ (1)

B’ (1) C’ (1)

A

B C

D D

A

B C

D

B

X

B C

sim(A’,A) = (3/3)struct*(2/3)label*[1/4*sim(B’,B)+3/4*sim(C’,C)] = 5/12
sim(B’,B) = (2/2)struct*(2/2)label*1.0 = 1
sim(C’,C) = (2/2)struct*(1/2)label*1.0*[1/2*sim(D’,D)+1/2*sim(D’,D)] = 1/2
sim(D’,D) = 1/1*1/1*1.0 = 1
sim(D’,D) = 1/1*1/1*1.0 = 1

sim(A’,A) = (3/3)struct*(2/3)label*1.0*[1/3*sim(B’,B)+1/3*sim(B’,B)+1/3*sim(C’,C)] = 4/9
sim(B’,B) = (2/2)struct*(2/2)label*1.0 = 1
sim(B’,B) = (2/2)struct*(1/2)label*1.0 = 1/2
sim(C’,C) = (1/2)struct*(1/1)label*1.0*[1/1*sim(D)] = 1/2
sim(D’,D) = 1/1*1/1*1.0 = 1

sim(X’,X) = (3/3)struct*(1/3)label*1.0*[1/2*sim(B’,B)+1/2*sim(C’,C)] = 1/3
sim(B’,B) = (1/1)struct*(1/1)label*1.0 = 1
sim(C’,C) = (1/1)struct*(1/1)label*1.0 = 1

Root’ (3)

A’ (2)

C’ (1)

D’ (1)

B’ (2) B’ (1)C’ (1)

D’ (1)

1st (3)

0th (0) 2nd (2)1st (2)

0th (2)

3rd (1)

0th (0) 1st (1)

0th (1)

2nd (1)

D’ (1)

0th (1)

0th (1) 0th (0) 1st (1)

0th (1)

0th (0) 1st (1) 2nd (1)

0th (1)0th (1)

(f) Supertree S = d1 ⊕ d2 ⊕ d3

Figure 7.2: Supertree creation

the node matches, the f req of N1,i is incremented by the f req of N2,j. Otherwise, N2,j is
added to the parent node of N1,i as a child node. Note that the order of child nodes of
document-related nodes (descriptive nodes) is maintained. The same procedure is applied

182 7 Clustering of XML Documents

recursively to the child nodes. As the creation of a supertree from documents, the merging
procedure is unaffected by the order of the merged supertrees. Figure 7.3 illustrates the
merging process of two supertrees.

Root’ (4)

1st (4)

A’ (4)

0th (2) 1st (2) 2nd (1)

B’ (2) C’ (1)

D’ (1)

0th (2) 0th (0) 1st (1)

0th (1)

Root’ (5)

1st (5)

A’ (5)

0th (0) 1st (5) 3rd (3)

B’ (5) D’ (3)

E’ (2)

0th (5) 0th (1) 1st (2)

0th (2)

2nd (4)

C’ (4)

0th (4)

Root’ (9)

1st (9)

A’ (9)

0th (2) 1st (7) 2nd (5)

B’ (7) C’ (5)

D’ (1)

0th (7) 0th (4) 1st (1)

0th (1)

3rd (3)

D’ (3)

E’ (2)

0th (1) 1st (2)

0th (2)

(a) Supertree ST1

Root’ (4)

1st (4)

A’ (4)

0th (2) 1st (2) 2nd (1)

B’ (2) C’ (1)

D’ (1)

0th (2) 0th (0) 1st (1)

0th (1)

Root’ (5)

1st (5)

A’ (5)

0th (0) 1st (5) 3rd (3)

B’ (5) D’ (3)

E’ (2)

0th (5) 0th (1) 1st (2)

0th (2)

2nd (4)

C’ (4)

0th (4)

Root’ (9)

1st (9)

A’ (9)

0th (2) 1st (7) 2nd (5)

B’ (7) C’ (5)

D’ (1)

0th (7) 0th (4) 1st (1)

0th (1)

3rd (3)

D’ (3)

E’ (2)

0th (1) 1st (2)

0th (2)

(b) Supertree ST2

Root’ (4)

1st (4)

A’ (4)

0th (2) 1st (2) 2nd (1)

B’ (2) C’ (1)

D’ (1)

0th (2) 0th (0) 1st (1)

0th (1)

Root’ (5)

1st (5)

A’ (5)

0th (0) 1st (5) 3rd (3)

B’ (5) D’ (3)

E’ (2)

0th (5) 0th (1) 1st (2)

0th (2)

2nd (4)

C’ (4)

0th (4)

Root’ (9)

1st (9)

A’ (9)

0th (2) 1st (7) 2nd (5)

B’ (7) C’ (5)

D’ (1)

0th (7) 0th (4) 1st (1)

0th (1)

3rd (3)

D’ (3)

E’ (2)

0th (1) 1st (2)

0th (2)

(c) Merged supertree ST1 ⊕ ST2

Figure 7.3: Merging two supertrees

7.4 Similarity Computation

Supertree representations allow to compare a single document to a group of documents
represented as a single supertree. Further, two supertrees can also be compared to each other.
This section provides the formulae that compute the similarity of (1) an ordered document
and a supertree, (2) an unordered document and a supertree, and (3) two supertrees.

7.4.1 Comparing Ordered Document Trees and Supertrees

In order to compare an ordered document to a supertree, the first similarity to be defined is
between a document-related node A′ in the supertree and a regular node B in the document.

7

7.4 Similarity Computation 183

Therefore, two similarities – one for the label and one for the content – have to be defined. A
labelSim function is used to define the similarity among labels, returning values between 0
and 1. For instance, a simple function may return either 1 (equal labels) or 0 (unequal labels).
One can imagine more elaborated similarity functions for labels that incorporate dictionaries
and thesauri performing a conceptual matching. For instance, the similarity of a section

label and a subsection label may be defined as 0, 75. The similarity contentSim between the
content of two nodes can be measured using standard comparison methods like the Jaccard
coefficient of the boolean model [21, pp. 25ff] or the cosine matching of the vector space
model (see Section 2.3.3).

In this work, the boolean model is used to compute content similarities of supertree nodes
and document nodes. Formally, label similarity and content similarity are given as follows:

labelSim(λ(A′), λ(B)) =

1 if λ(A′) = λ(B)

0 otherwise
(7.1)

contentSim(γ(A′), γ(B)) =
|γ(A′) ∩ γ(B)|
|γ(A′) ∪ γ(B)| (7.2)

In the equations λ(N) denotes the label and γ(N) the content of node N.

Since parental relationships are established among document nodes, these only exist
among document-related nodes of the supertree. It is worth recalling that descriptive nodes
are simply artificial nodes and hence are not related to any structural relationship in the
documents.

Besides the defined labelSim, the computation of the structural similarity of a document-
related supertree node A′ and a document node A incorporates two additional parameters,
a branching factor wbranch(A′) and a labeling factor wlabel(A′). Formally, these factors are
defined as follows:

Relative branching factor wbranch(A′) The frequency of the descriptive node [ith] on the edge
between A′ and P′, divided by the frequency of P′. P′ denotes the document-related
parent node of the document-related node A′.

wbranch(A′) =
[ith]. f req
P′. f req

(7.3)

Relative labeling factor wlabel(A′) The frequency of A′ having the same label as A, divided
by the frequency of the descriptive node [ith] on the edge between A′ and P′

wlabel(A′) =
A′. f req
[ith]. f req

(7.4)

184 7 Clustering of XML Documents

Figure 7.4 illustrates the way both factors are derived from the supertree. The structural

0th ord = 1st

freq = 2
2nd

lab = A’
freq = 1

lab = P’
freq = 3

Document-related
nodes

Descriptive nodes

= wbranch(A’)

= wlabel(A’)

P

A

supertree document

2
3
1
2

labelSim(’A’,’A’)

Figure 7.4: Parameters of structural similarity

similarity structSim(A′, A) of a supertree node A′ and a document node A is defined by
Equation 7.5.

structSim(A′, A) = wbranch(A′) · wlabel(A′) · labelSim(λ(A′), λ(A)) (7.5)

The final node similarity of a supertree node and a document node is defined in Equa-
tion 7.6. A parameter αstruct (0 ≤ αstruct ≤ 1) allows to tune the impact of the structural
similarity and the content similarity.

nodeSim(A′, A) = αstruct · structSim(A′, A) + (1− αstruct) · contentSim(γ(A′), γ(A)) (7.6)

A document and a supertree are compared by matching the root node of the document
tree and the root node of the supertree. Note that it is not checked whether a supertree
includes the document tree as a subtree. The similarity function sim combines the node
similarity of the root nodes and the recursively computed node similarities of the child nodes
childSim. A parameter βparent (0 ≤ βparent ≤ 1) controls the influence of the parents’ node
similarity and the averaged childrens’ node similarity. Formally, the overall similarity of a
supertree rooted in A′ and a document rooted in A is given by sim(A′, A):

sim(A′, A) = βparent · simNode(A′, A) + (1− βparent) · childSim(A′, A) (7.7)

childSim(B′, B) =
1
|B| ·

|B|

∑
i=1

sim(B′i , Bi) (7.8)

where |B| is the number of children of node B, and B′i (resp. Bi) denotes the i-th child of B′

(resp. B). Recall that the primed nodes belong to the supertree. Averaging the similarity of
the child nodes in childSim(B′, B) is justified because weighing is implicitly applied in the
recursive computation of sim(A′, A).

7

7.4 Similarity Computation 185

Starting at the root of the document tree, each document node is compared to an equivalent
document-related node in the supertree. If a document node does not correspond to any
of the document-related nodes in the supertree, its similarity is defined as 0. Accordingly,
the similarity childSim of a childless document node (leaf node) and a document-related
supertree node that always contains child nodes (leftmost descriptive child node [0th] has
f req = 0) is defined as 0.

Figure 7.5 shows the four major cases of comparing child nodes. In all subfigures the
branching factor wbranch and the labeling factor wlabel remain the same. In the example
wbranch = 5

7 means that 5 out of 7 supertree parent nodes of A′ contain a 3rd child node.
wlabel = 4

5 reflects that 4 times out of 5 the 3rd child node is A. Based on labelSim, contentSim,
and αstruct = 0, 5, the node similarity of node A′ and A is computed using Equation 7.6. For
better illustration the constant nodeSim(A′, A) is assumed to be 0, 8 (0, 786 = 1

2 ·
5
7 ·

4
5 · 1, 0 +

1
2 · 1, 0 = 11

14). Further, βparent is set to 0, 5.

0th

(4)

A’
(4)

3rd

(5)

...’
(7)

supertree

0th

(2)

A’
(4)

3rd

(5)

A

supertree document

1st

(2)
2nd

(1)

A

...’
(7)

wbranch(A’) = 5/7

wlabel(A’) = 4/5

document

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 4/4

similarity similarity

wbranch(A’) = 5/7

wlabel(A’) = 4/5

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 2/4

0th

(2)

A’
(4)

3rd

(5)

supertree document

1st

(2)
2nd

(1)

...’
(7)

similarity

wbranch(A’) = 5/7

wlabel(A’) = 4/5

labelSim(A’,A)
contentSim(A’,A)

A

supertree document

B C

similarity

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 0

A

B C

childSim(Ai’,Ai)
=

wbranch(A’) = 5/7

wlabel(A’) = 4/5

0th

(4)

A’
(4)

3rd

(5)

...’
(7)

sim(...,B)+sim(...,C)
2

(a)

0th

(4)

A’
(4)

3rd

(5)

...’
(7)

supertree

0th

(2)

A’
(4)

3rd

(5)

A

supertree document

1st

(2)
2nd

(1)

A

...’
(7)

wbranch(A’) = 5/7

wlabel(A’) = 4/5

document

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 4/4

similarity similarity

wbranch(A’) = 5/7

wlabel(A’) = 4/5

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 2/4

0th

(2)

A’
(4)

3rd

(5)

supertree document

1st

(2)
2nd

(1)

...’
(7)

similarity

wbranch(A’) = 5/7

wlabel(A’) = 4/5

labelSim(A’,A)
contentSim(A’,A)

A

supertree document

B C

similarity

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 0

A

B C

childSim(Ai’,Ai)
=

wbranch(A’) = 5/7

wlabel(A’) = 4/5

0th

(4)

A’
(4)

3rd

(5)

...’
(7)

sim(...,B)+sim(...,C)
2

(b)
0th

(4)

A’
(4)

3rd

(5)

...’
(7)

supertree

0th

(2)

A’
(4)

3rd

(5)

A

supertree document

1st

(2)
2nd

(1)

A

...’
(7)

wbranch(A’) = 5/7

wlabel(A’) = 4/5

document

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 4/4

similarity similarity

wbranch(A’) = 5/7

wlabel(A’) = 4/5

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 2/4

0th

(2)

A’
(4)

3rd

(5)

supertree document

1st

(2)
2nd

(1)

...’
(7)

similarity

wbranch(A’) = 5/7

wlabel(A’) = 4/5

labelSim(A’,A)
contentSim(A’,A)

A

supertree document

B C

similarity

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 0

A

B C

childSim(Ai’,Ai)
=

wbranch(A’) = 5/7

wlabel(A’) = 4/5

0th

(4)

A’
(4)

3rd

(5)

...’
(7)

sim(...,B)+sim(...,C)
2

(c)

0th

(4)

A’
(4)

3rd

(5)

...’
(7)

supertree

0th

(2)

A’
(4)

3rd

(5)

A

supertree document

1st

(2)
2nd

(1)

A

...’
(7)

wbranch(A’) = 5/7

wlabel(A’) = 4/5

document

nodeSim(A’,A) = 1.0

childSim(Ai’,Ai)
= 4/4

similarity similarity

wbranch(A’) = 5/7

wlabel(A’) = 4/5

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 2/4

0th

(2)

A’
(4)

3rd

(5)

supertree document

1st

(2)
2nd

(1)

...’
(7)

similarity

wbranch(A’) = 5/7

wlabel(A’) = 4/5

labelSim(A’,A)
contentSim(A’,A)

A

supertree document

B C

similarity

labelSim(A’,A)
contentSim(A’,A)

childSim(Ai’,Ai)
= 0

A

B C

childSim(Ai’,Ai)
=

wbranch(A’) = 5/7

wlabel(A’) = 4/5

0th

(4)

A’
(4)

3rd

(5)

...’
(7)

sim(A’1,B)+sim(A’2,C)
2

(d)

Figure 7.5: Comparing document nodes to supertree nodes

In Figure 7.5a, a document leaf node A is compared to a supertree node A′ without
child nodes. The overall similarity of the two subtrees is sim(A′, A) = 1

2 · 0, 8 + 1
2 ·

4
4 = 0, 9.

186 7 Clustering of XML Documents

The similarity of child nodes Ai (no children) is 1,0 because 4 out of 4 A′i nodes have no
children. In the next Figure 7.5b a document leaf node A without children is compared
to a supertree node A′ that does contain child nodes. The similarity of the two trees
is sim(A′, A) = 1

2 · 0, 8 + 1
2 ·

2
4 = 0, 65. If supertree node A′ would never come without

child nodes, childSim(A′, A) would be zero. The opposite case is given in Figure 7.5c
where a document node with child nodes is compared to a supertree node A′ without
child nodes. The similarity between the two trees is sim(A′, A) = 1

2 · 0, 8 + 1
2 · 0, 0 = 0, 4.

Here, childSim(A′, A) = 0, 0 because A′ never occurs with child nodes. The general case
is depicted in Figure 7.5d. A document node with child nodes is compared to a supertree
node A′ with child nodes. The similarity between the two trees is given by sim(A′, A) =
1
2 · 0, 8 + 1

2 · (
1
2 · sim(A′1, B) + sim(A′2, C)).

Figure 7.6 gives the similarity values of five different document trees and a supertree that
is built from the first three documents (see Figure 7.2f). Thus, the first three documents are
fully included in the supertree (Figures 7.6a, 7.6b, and 7.6c), the fourth document is partially
included (Figure 7.6d), and the fifth document is not included in the supertree (Figure 7.6e).
The similarities of all documents are quite high because (1) child nodes are equally important
as their root node and (2) contents of identically labeled nodes fully match (see Figure 7.6e).
This result can be varied by using other values for αstruct and βlabel .

One feature of the proposed similarity method is that the depth level of a node is implicitly
considered during similarity computation. Figure 7.7a shows an example supertree built
from a single document. The next two figures, Figure 7.7b and Figure 7.7c, show two similar
documents where only a single node has been changed on different levels. From the similarity
values one can see that the document in Figure 7.7c is more similar to the document in
Figure 7.7a than the document in Figure 7.7b because the mismatching node X is nested at a
deeper level in the document structure.

7

7.4 Similarity Computation 187

A

B C

D D

A

B C

D

B

X

B C

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.92 = 0.875
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(B’,B) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(C’,C) = 0.5*[0.5*(0.5*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(X’,X) = 0.5*[0.5*(1.0*0.34*1.0) + 0.5*1.0] + 0.5*1.0 = 0.833
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.5 = 0.67
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,X) = 0.5*[0.5*(1.0*0.0 *0.0) + 0,5*0.0] + 0.5*0.0 = 0.0

A

B C

D

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

A

B X

(a)

A

B C

D D

A

B C

D

B

X

B C

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.92 = 0.875
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(B’,B) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(C’,C) = 0.5*[0.5*(0.5*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(X’,X) = 0.5*[0.5*(1.0*0.34*1.0) + 0.5*1.0] + 0.5*1.0 = 0.833
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.5 = 0.67
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,X) = 0.5*[0.5*(1.0*0.0 *0.0) + 0,5*0.0] + 0.5*0.0 = 0.0

A

B C

D

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

A

B X

(b)

A

B C

D D

A

B C

D

B

X

B C

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.92 = 0.875
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(B’,B) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(C’,C) = 0.5*[0.5*(0.5*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(X’,X) = 0.5*[0.5*(1.0*0.34*1.0) + 0.5*1.0] + 0.5*1.0 = 0.833
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.5 = 0.67
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,X) = 0.5*[0.5*(1.0*0.0 *0.0) + 0,5*0.0] + 0.5*0.0 = 0.0

A

B C

D

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

A

B X

(c)

A

B C

D D

A

B C

D

B

X

B C

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.92 = 0.875
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(B’,B) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(C’,C) = 0.5*[0.5*(0.5*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(X’,X) = 0.5*[0.5*(1.0*0.34*1.0) + 0.5*1.0] + 0.5*1.0 = 0.833
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.5 = 0.67
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,X) = 0.5*[0.5*(1.0*0.0 *0.0) + 0,5*0.0] + 0.5*0.0 = 0.0

A

B C

D

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

A

B X

(d)

A

B C

D D

A

B C

D

B

X

B C

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.92 = 0.875
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(B’,B) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(C’,C) = 0.5*[0.5*(0.5*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(X’,X) = 0.5*[0.5*(1.0*0.34*1.0) + 0.5*1.0] + 0.5*1.0 = 0.833
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.5 = 0.667
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,X) = 0.5*[0.5*(1.0*0.0 *0.0) + 0.5*0.0] + 0.5*0.0 = 0.0

A

B C

D

sim(A’,A) = 0.5*[0.5*(1.0*0.67*1.0) + 0.5*1.0] + 0.5*0.94 = 0.885
sim(B’,B) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(C’,C) = 0.5*[0.5*(1.0*0.5 *1.0) + 0.5*1.0] + 0.5*1.0 = 0.875
sim(D’,D) = 0.5*[0.5*(1.0*1.0 *1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

A

B X

(e)

Figure 7.6: Similarities of documents and the supertree constructed in Figure 7.2f

188 7 Clustering of XML Documents

A

B C

D D

Root’ (1)

1st (1)

A’ (1)

0th (0) 1st (1) 2nd (1)

B’ (1) C’ (1)

D’ (1) D’ (1)

0th (1) 0th (0) 1st (1) 2nd (1)

0th (1) 0th (1)

A

X C

D D

A

B C

D X

sim(A’,A) = 0.75 sim(A’,A) = 0.9375

(a) Supertree of a single document

A

B C

D D

Root’ (1)

1st (1)

A’ (1)

0th (0) 1st (1) 2nd (1)

B’ (1) C’ (1)

D’ (1) D’ (1)

0th (1) 0th (0) 1st (1) 2nd (1)

0th (1) 0th (1)

A

X C

D D

A

B C

D X

sim(A’,A) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*0.5 = 0.75
sim(B’,X) = 0.5*[0.5*(1.0*0.0*0.0) + 0.5*0.0] + 0.5*0.0 = 0.0
sim(C’,C) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,D) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,D) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*0.875 = 0.9375
sim(C’,C) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*0.5 = 0.75
sim(D’,D) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,X) = 0.5*[0.5*(1.0*0.0*0.0) + 0.5*0.0] + 0.5*0.0 = 0.0
sim(B’,B) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

(b) Document d1

A

B C

D D

Root’ (1)

1st (1)

A’ (1)

0th (0) 1st (1) 2nd (1)

B’ (1) C’ (1)

D’ (1) D’ (1)

0th (1) 0th (0) 1st (1) 2nd (1)

0th (1) 0th (1)

A

X C

D D

A

B C

D X

sim(A’,A) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*0.5 = 0.75
sim(B’,X) = 0.5*[0.5*(1.0*0.0*0.0) + 0.5*0.0] + 0.5*0.0 = 0.0
sim(C’,C) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,D) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,D) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

sim(A’,A) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*0.875 = 0.9375
sim(C’,C) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*0.5 = 0.75
sim(D’,D) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0
sim(D’,X) = 0.5*[0.5*(1.0*0.0*0.0) + 0.5*0.0] + 0.5*0.0 = 0.0
sim(B’,B) = 0.5*[0.5*(1.0*1.0*1.0) + 0.5*1.0] + 0.5*1.0 = 1.0

(c) Document d2

Figure 7.7: Depth considerations of comparing documents and a supertree

7

7.4 Similarity Computation 189

7.4.2 Comparing Unordered Document Trees and Supertrees

The previous section was concerned with comparing ordered documents to an ordered su-
pertree. From a document-centric XML point of view, this assumption seems to be valid.
However, the supertree approach proposed is simply extended to handle unsorted trees.
Therefore, additional edges are inserted in the supertree that maintain correct parent-child
relations. In Figure 7.8, an ordered supertree (Figure 7.8a) and an equivalent unordered su-
pertree (Figure 7.8b) are depicted. In the unordered supertree, inserted edges are highlighted
in red color.

The effect of the new edges is that all document-related child nodes B′ and C′ of a parent
document-related node A′ are allowed in any position (i.e., become children of all descriptive
nodes). This allows both nodes B′ and C′ being matched as the first and/or as the second child
of A′ in the figure. The descriptive nodes are maintained for computing the branching factors
of the supertree structure. Most important, the supertree does not have to be recalculated
explicitly. The only parameter that needs to be changed in the formulae is the labeling
factor wlabel , which is redefined to the constant value of 1,0. The reason for this is that the
frequencies in the descriptive nodes on the edges between child nodes and parent nodes are
independent of each other and must not be mixed up. Thus, the relative labeling frequency
would become incorrect.

Root’ (5)

1st (5)

A’ (5)

0th (0) 1st (5) 2nd (4)

B’ (5) C’ (4)

D’ (4) E’ (3)

0th (5) 0th (0) 1st (4) 2nd (3)

0th (4) 0th (3)

F’ (2)

3rd (2)

0th (2)

Root’ (5)

1st (5)

A’ (5)

0th (0) 1st (5) 2nd (4)

B’ (5) C’ (4)

D’ (4) E’ (3)

0th (5) 0th (0) 1st (4) 2nd (3)

0th (4) 0th (3)

F’ (2)

3rd (2)

0th (2)

(a) Ordered supertree

Root’ (5)

1st (5)

A’ (5)

0th (0) 1st (5) 2nd (4)

B’ (5) C’ (4)

D’ (4) E’ (3)

0th (5) 0th (0) 1st (4) 2nd (3)

0th (4) 0th (3)

F’ (2)

3rd (2)

0th (2)

Root’ (5)

1st (5)

A’ (5)

0th (0) 1st (5) 2nd (4)

B’ (5) C’ (4)

D’ (4) E’ (3)

0th (5) 0th (0) 1st (4) 2nd (3)

0th (4) 0th (3)

F’ (2)

3rd (2)

0th (2)

(b) Unordered supertree

Figure 7.8: Ordered vs. unordered supertree

190 7 Clustering of XML Documents

7.4.3 Comparing Supertrees

Comparing two supertrees differs from comparing a supertree and a document. The reason for
this difference is that two types of nodes, descriptive nodes and document-related nodes, have
to be compared during a single recursion step. This is because descriptive node similarities
and document-related node similarities incorporate a set of different parameters.

The similarity computation starts at the root nodes of the supertrees ST1 and ST2 using
the Equations 7.11–7.19. In the equations, labelSim, contentSim, αstruct, and βparent remain
as defined in Section 7.4.1. In order to compare different relative frequencies, both the
branching factor and the labeling factor need to be redefined. The branching factor wbranch is
now computed for two descriptive nodes A′descr and B′descr, while the labeling factor wlabel is
computed for two document-related nodes Cdocrel and Ddocrel . The new formulae are given as
follows:

wbranch(A′descr, B′descr) =
A′descr.parent(). f req

A′descr.parent(). f req + B′descr.parent(). f req
(7.9)

wlabel(C′docrel , D′docrel) =
C′docrel .parent(). f req

C′docrel .parent(). f req + D′docrel .parent(). f req
(7.10)

where A′.parent() denotes the parent node of A′ (either a document-related node or a
descriptive node). This redefinition considers the frequencies of both supertree parent nodes
to compute the relative frequency. Thus, the factors become more meaningful and better
interpretable.

The similarity of two document-related nodes A′ (in supertree ST1) and B′ (in supertree
ST2) combines the similarity of the current document-related node nodeSim and the averaged
similarity of the descriptive child nodes avgDescrSim. Figure 7.9 explains the scope of the
main parameters in the Equations 7.11 to 7.19.

Ao’
(1)

1st

(5)

supertree ST1

A’
(7)

similarity

avgDescrSim(Ai’,Bj’)

avgDocRelSim(Ai,k’, Bj,l’)

supertree ST2

0th

(2)
nth

(2)

A1’
(2)

A2’
(2)

...

... Bp’
(2)

1st

(4)

B’
(6)

0th

(1)
mth

(1)

B1’
(1)

B2’
(1)

...

...

nodeSim(A’,B’)

noChildSim(A0’,B0’)

Figure 7.9: Comparison of two document-related supertree nodes

7

7.5 Clustering Approaches 191

The similarity of two document-oriented supertree nodes A′ and B′ is given by the
following formulae:

sim(A′, B′) = βparent · nodeSim(A′, B′) + (1− βparent)avgDescrSim(A′, B′) (7.11)

nodeSim(A′, B′) = αstruct · labelSim(λ(A′), λ(B′)) + (1− αstruct) · contentSim(γ(A′), γ(B′)) (7.12)

avgDescrSim(C′, D′) =
1

max(|C′|, |D′|) · [(
max(|C′|,|D′|)

∑
i=1

descrSim(C′i , D′i)) + noChildSim(C′0, D′0)] (7.13)

noChildSim(E′, F′) =

1 if wbranch(E′, F′) = 0∧ wbranch(F′, E′) = 0

0 if wbranch(E′, F′) = 0 Y wbranch(F′, E′) = 0
min(wbranch(E′,F′),wbranch(F′,E′))
max(wbranch(E′,F′),wbranch(F′,E′)) otherwise

(7.14)

The similarity of a descriptive node descrSim includes the relative branching factor as
well as the averaged similarity of the document-related child nodes avgDocRelSim. Missing
descriptive nodes are defined as unequal (Equation 7.15).

descrSim(E′, null) = descrSim(null, F′) = 0 (7.15)

descrSim(E′, F′) =
min(wbranch(E′, F′), wbranch(F′, E′))
max(wbranch(E′, F′), wbranch(F′, E′))

· avgDocRelSim(E′, F′) (7.16)

avgDocRelSim(E′, F′) =
1

max(|E′|, |F′|) ·
max(|E′|,|F′|

∑
i=1

docRelSim(E′i , F′i) (7.17)

The recursion takes place in the similarity computation of the document-related node
docRelSim, which combines the relative labeling factor and the recursive node similarity.
As for the descriptive nodes, missing document-related nodes are also defined as unequal
(Equation 7.18).

docRelSim(E′, null) = docRelSim(null, F′) = 0 (7.18)

docRelSim(E′, F′) =
min(wlabel(E′, F′), wlabel(F′, E′))
max(wlabel(E′, F′), wlabel(F′, E′))

· sim(E′, F′) (7.19)

7.5 Clustering Approaches

Two different clustering techniques are used in this work. First, k-Means is applied to partition
a set of XML trees into flat clusters. However, for the sake of improving information retrieval
tasks, a second approach based on hierarchical clustering is implemented. Both clustering
approaches operate on supertree representations presented in the previous sections. The
results using an INEX document collection dedicated to evaluate clustering performance are
given in the next section.

192 7 Clustering of XML Documents

Algorithm 7.1 Clustering via the k-Means algorithm

1: X = {x1 . . . xm} //unlabeled documents
2: C = {c1 . . . cn} //cluster centers

3: procedure k-Means(k)
4: initialize C (randomly select k documents of X)
5: repeat
6: for (i = 1 to |X|) do
7: assign xi to closest cj
8: end for
9: distortion = ∑i ∑j dist2(ci, xj)

10: recalculate cluster centers C′

11: until (C = C′ || distortion ≤ ε || maximum number of iterations)
12: end procedure

7.5.1 Overview of k-Means

The k-Means algorithm [169, 199, 147] is one of the simplest unsupervised learning algorithms
that solves the problem of partitioning a set of unknown data points into an a priori fixed
number of k disjunct clusters. The main idea is to find k clusters such that the error of all data
point assignments becomes minimal, satisfying two properties: (1) Each cluster is represented
by an (artificial) cluster center called centroid, which is the mean of all data points in that
cluster, and (2) each data point is assigned to that cluster whose center it is closest to.

The algorithm (see Algorithm 7.1) starts with randomly selecting k data points as initial
cluster centers. In the context of this work, a cluster center is represented as an ordered
supertree that is created from all document trees the cluster contains. Initial clusters are
supertrees built from a single document tree only. Then, it proceeds in iterations while keeping
track of the centroids. Each iteration tries to improve the quality of clustering. Therefore, all
data points are assigned to their closest centroid. The sum of the square distances (distortion)
of all data points to their assigned cluster centers is taken as objective function, which is tried
to be minimized. Afterwards, k new cluster centers are computed based on their assigned data
points, establishing the loop. The algorithm terminates if (1) the cluster centers (assignments)
of subsequent iterations do not change, (2) the distortion distortion drops below a certain
threshold ε, or (3) the maximum number of iterations is reached.

7.5.2 Overview of Hierarchical Clustering

In contrast to flat clusters as created by k-Means, hierarchical clustering [97] is a method that
creates a hierarchy of clusters (called dendogram). Individual data points define the leaf
nodes of the cluster hierarchy. A single top cluster that contains every data point defines the
root node. Figure 7.10 shows the procedure of hierarchical clustering graphically.

7

7.5 Clustering Approaches 193

A2,3

d1 d2 d3 d4 d5 d6
Dn

C5,6

B2,3,4

D2,3,4,5,6

E1,2,3,4,5,6,7
A

gg
lo

m
er

at
iv

e

D
ivisive

sim=0.9

sim=0.8

sim=0.7

sim=0.6

sim=0.5

Figure 7.10: Hierarchical clustering

There are two possibilities to create a cluster hierarchy: agglomerative (bottom-up) clus-
tering starts by defining each data point as a separate cluster containing only one element
and merges the two most similar (closest) clusters until a single top cluster remains; divisive
(top-down) clustering starts with a single top cluster that contains all data points and breaks
up the least similar (farthest) data point until only single elements remain. The outer arrows
in Figure 7.10 indicate the agglomerative and divisive clustering approach. Applying ag-
glomerative clustering, the order of clusters created is given by the similarity values beneath
the clusters. First, cluster A is created due to sim(d2, d3) = 0, 9. Subsequently, clusters B
(sim(A, d4) = 0, 8) to E (sim(d1, E) = 0, 5) are formed. Clusters that consist of another cluster
and a single data point are called ‘mixed clusters’ (e.g., clusters B and E in the figure). Addi-
tional constraints or stopping criteria (e.g., the final number of clusters, a minimal closeness of
clusters to get merged) can be introduced to govern the clustering process. The advantage of
hierarchical clustering is that the dendogram can be cut at a certain height (a certain number
of top clusters). Thus, precision can be tuned by choosing either a larger number of smaller
clusters or a smaller number of larger clusters.

According to [97], there are three different methods to determine the closeness of two
clusters:

Single-linkage the least distant pair of data points defines the distance of two clusters (as in
Figure 7.10);

Complete-linkage the most distant pair of data points defines the distance of two clusters;

194 7 Clustering of XML Documents

Average-linkage the average distance of all pairs of data points (distance of the two cluster
centers) defines the distance of two clusters;

This work applies an agglomerative clustering approach based on average-linkage. Su-
pertrees (see Section 7.3) provide the representations of cluster centers and supertree com-
parison (see Section 7.4.3) defines their similarity. To test the efficiency of the approach, a
prototype was implemented that enables the evaluation of different supertree and clustering
settings.

7.6 Evaluation

As for the XML document classification described in the previous chapter, several aspects of
clustering XML documents are investigated in this section. The evaluation is conducted on
a set of real-world XML collections based on the movie database (MovieDB) [65]) proposed
in INEX’05 [90]. The goal is to find optimal parameter settings that are applied for retrieval-
related clustering tasks. The key questions can be formulated as follows:

1. How does the number of clusters influence the clustering?
2. What are the optimal parameter settings?
3. How does the clustering performance depend on the size of the training set?
4. How does content-and-structure based clustering perform compared to pure structure

based clustering?
The INEX collections used for clustering do not contain the same documents as the

collections used for classification. Also, the clusters do not correspond to the categories. INEX
provides human-defined clusters and cluster assignments for the collections, which allow
performance comparisons of different approaches and systems. For better understanding of
this section, the term ‘classes’ refers to the optimal clusters of a collection, while the term
‘clusters’ refers to the system-created clusters. Again, the XML collections are of two types:

� Structure-only (SO) collections containing only the structure of the XML documents.
These include four collections: m-db-s-0, m-db-s-1, m-db-s-2, m-db-s-3, where the last three
collections are noisy versions of the first one. The amount of noise and class overlap
increases from m-db-s-0 to m-db-s-3. The collections come in the form of two sets, a
training and a testing set. The training documents of the m-db-s data sets are organized
in 11 classes, where each class corresponds to a movie genre. Table 7.1 summarizes the
number of training and testing documents of each collection. Training documents are
selected randomly and uniformly from the classes.

7

7.6 Evaluation 195

Table 7.1: Structure-Only corpora
Corpus Train/Test Train/Test Train/Test Train/Test Train/Test

10% 30% 50% 70% 100%
m-db-s-0 488/485 1.453/1.448 2.415/2.409 3.383/3.376 4.824/4.816
m-db-s-1 487/486 1.449/1.447 2.410/2.408 3.378/3.374 4.818/4.814
m-db-s-2 486/485 1.450/1.447 2.412/2.408 3.379/3.372 4.820/4.810
m-db-s-3 488/485 1.453/1.445 2.414/2.404 3.380/3.370 4.821/4.810

� Content-and-structure (CAS) collections consisting of the entire documents. The struc-
ture of the CAS documents is more heterogenous than that of the SO documents. Thus,
content information is expected to improve clustering performance. Both collections,
m-db-cs-1 and m-db-cs-2, consist of 4.825 labeled documents assigned to 11 different
classes. The sets are split into 2.415 training and 2.410 testing documents. Table 7.2
summarizes the number of training and testing documents of the two collections.

Table 7.2: Content-and-Structure corpora
Corpus Train/Test Train/Test Train/Test Train/Test Train/Test

10% 30% 50% 70% 100%
m-db-cs-1 247/246 730/728 1.210/1.208 1.696/1.692 2.415/2.410
m-db-cs-2 247/246 730/728 1.210/1.208 1.696/1.692 2.415/2.410

Four sets of experiments aim at answering the questions stated earlier. The first three deal
with the structure-only setting, while the last one is concerned with the content-and-structure
setting. A comparison of the results against some available results from other authors is
highlighted at the end of this section.

7.6.1 Measures

Results achieved are evaluated using two evaluation measures, namely purity and en-
tropy [230, 268, 74]. Purity describes the homogeneity of a cluster ci. In general, the higher
the purity the better a system works. The [0, 1] purity of a cluster ci is defined as

p(ci) =
number of documents of the majority class of cluster ci

number of documents in the cluster ci
=

1
ni
·max

j
(nj

i) (7.20)

where ni is the number of elements in cluster ci, and nj
i is the number of elements of class j

assigned to cluster i.
In contrast to purity, entropy measures the quality of a cluster in terms of its disorder. In

general, the lower the entropy, the better a system performs. Formally, the [0, 1] entropy of a
cluster ci is defined as

196 7 Clustering of XML Documents

e(ci) = − 1
ln l
·

l

∑
j=1

nj
i

ni
ln

nj
i

ni
(7.21)

where l is the total number of classes in the dataset. Thus, entropy is more comprehensive
than purity because it considers the entire collection [230].

The overall purity and entropy of all clusters is computed using two kinds of averages:
unweighed and weighed.

Unweighed macro averaging evaluates on the cluster level. Each cluster is given equal
weight. The overall purity and entropy are computed as the arithmetic averages:

pmacro = ∑k
i=1 p(ci)

k
(7.22)

emacro = ∑k
i=1 e(ci)

k
(7.23)

where k is the number of clusters.

Weighed micro averaging evaluates on the document level. Each cluster is assigned a weight
proportional to the size of the cluster. Thus, pmicro and emicro give equal weight to each
document:

pmicro = ∑k
i=1 p(ci) · ni

n
(7.24)

emicro = ∑k
i=1 e(ci) · ni

n
(7.25)

(7.26)

where k is the number of clusters and n is the total number of clustered elements.

Purity (for clustering) defines the percentage of documents associated with the majority
classes of all documents, whereas accuracy (for classification) is the percentage of correctly
assigned documents to all documents. In case of comparing classification and clustering,
macro-averaged purity and accuracy are both equal.

7.6.2 Experiment I - How Does the Parameter βparent Affect the Purity and
Entropy?

In a first experiment, the parameter βparent which controls the importance of the parent node
and child nodes similarities is tested. Using the SO corpus m-db-s-0, different values for both
clustering approaches, k-Means and hierarchical clustering, are evaluated. Since the corpus is
structure-only, αstruct is set to 1, 0. The number of clusters is fixed at 11, which is the number
of original classes.

7

7.6 Evaluation 197

The results of k-Means and hierarchical clustering HC are given in Table 7.3 and Figure 7.11.
For the k-Means approach, all measures are averaged over ten runs.

Table 7.3: Evaluation results for the parameter βparent
k-Means HC

βparent pmicro pmacro emicro emacro pmicro pmacro emicro emacro
0,0 0,604 0,668 0,334 0,281 0,160 0,160 0,964 0,964
0,1 0,601 0,645 0,338 0,304 0,173 0,880 0,950 0,138
0,2 0,613 0,659 0,328 0,291 0,219 0,925 0,895 0,086
0,3 0,597 0,651 0,342 0,300 0,248 0,900 0,844 0,123
0,4 0,608 0,630 0,328 0,309 0,498 0,632 0,473 0,333
0,5 0,604 0,602 0,333 0,340 0,502 0,683 0,491 0,287
0,6 0,604 0,639 0,337 0,309 0,463 0,674 0,463 0,271
0,7 0,612 0,687 0,328 0,257 0,504 0,733 0,438 0,227
0,8 0,596 0,691 0,337 0,255 0,421 0,728 0,564 0,231
0,9 0,598 0,725 0,339 0,228 0,447 0,699 0,566 0,276
1,0 0,534 0,597 0,390 0,327 0,588 0,657 0,342 0,272

0,000

0,200

0,400

0,600

0,800

1,000

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

k-Means purity HC purity k-Means entropy HC entropy

(a) Micro averaging

0,000

0,200

0,400

0,600

0,800

1,000

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

k-Means purity HC purity k-Means entropy HC entropy

(b) Macro averaging

Figure 7.11: Effect of βparent on the purity and entropy (m-db-s-0)

A parameter setting of βparent = 1, 0 leads to very high similarities of clusters that contain
documents with the same root node. Contrary, βparent = 0, 0 puts all weight to the similarity
of the leaf nodes. Interestingly, the same parameter setting performs different in the two
approaches.

k-Means achieves best results for βparent = 0, 2 (micro averaging) and βparent = 0, 9 (macro
averaging). Generally, purity and entropy are not too strongly influenced by βparent. Values
differ by only 8,0%-points for micro averaging and 12,8%-points for macro averaging.

Hierarchical clustering is influenced strongly by βparent. Best results are computed for
βparent = 1, 0 (micro averaging) and βparent = 0, 2 (macro averaging). In contrast to k-Means,
values differ by 42,9%-points for micro averaging and 76,5%-points for macro averaging. Very

198 7 Clustering of XML Documents

high macro (e.g., 92,5%) values occur with low micro purity values (e.g., 21,9%). This effect is
explained by many small clusters with high purity and few large clusters with low purity.

In further experiments both approaches stick to the parameter that gives best results using
macro averaging.

7.6.3 Experiment II - How Does k Affect the Purity and Entropy?

The second experiment evaluates the clustering performance for different numbers of clusters.
k-Means and hierarchical clustering are applied on the SO corpus m-db-s-0. The different k
values tested are 3, 5, 7, 9, 11 (number of intended clusters), 13, 15, and 21. αstruct is set to 1, 0
(only structure is considered). The parameter βparent is fixed at 0, 9 for k-Means and 0, 2 for
hierarchical clustering.

All experimental runs of the previous experiment are recalculated. Since k-Means obtains
all values by averaging over ten runs, the result for k = 11 slightly differs. In contrast, HC
measures remain the same for k = 11. The results are presented in Table 7.4. Figure 7.12
compares the purity and entropy values computed.

Table 7.4: Evaluation results for the parameter k
k-Means HC

βparent pmicro pmacro emicro emacro pmicro pmacro emicro emacro
3 0,391 0,414 0,543 0,510 0,213 0,723 0,903 0,318
5 0,524 0,594 0,414 0,345 0,216 0,834 0,899 0,190
7 0,523 0,645 0,405 0,294 0,220 0,881 0,893 0,136
9 0,571 0,704 0,358 0,241 0,219 0,908 0,894 0,106

11 0,607 0,726 0,330 0,222 0,219 0,925 0,895 0,086
13 0,607 0,732 0,338 0,222 0,221 0,936 0,892 0,073
15 0,621 0,762 0,326 0,197 0,220 0,945 0,893 0,063
21 0,643 0,780 0,312 0,183 0,220 0,960 0,892 0,045

The charts for both approaches clearly show an improvement for higher numbers of
clusters. The performance of k-Means is more influenced than the performance of hierarchical
clustering.

In k-Means, purity differs by 25,2%-points (micro averaging) and 36,6%-points (macro
averaging). Applying HC, purity values are less affected, differing by only for 0,8%-points
(micro averaging) and 23,8%-points (macro averaging).

Irrespective of the results achieved in this experiment, the number of clusters in subsequent
experiments is set to 11. The reason for this decision is that other researchers evaluate their
results with this number too. A comparison of the final results is carried out in Section 7.6.6.

7

7.6 Evaluation 199

0,000

0,200

0,400

0,600

0,800

1,000

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

k-Means purity HC purity k-Means entropy HC entropy

(a) Micro averaging

0,000

0,200

0,400

0,600

0,800

1,000

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

k-Means purity HC purity k-Means entropy HC entropy

(b) Macro averaging

Figure 7.12: Effect of k on the purity and entropy (m-db-s-0)

7.6.4 Experiment III - How Does the Training Data Affect the Purity and Entropy?

A third experiment evaluates the impact of the training size on the clustering performance.
Normally, the entire set of training samples is taken to create clusters. Hence, it is clear
that the size of the training set is crucial for the clustering algorithm. To observe the effect
of increasing the size of the training data set, the m-db-s-0 collection is split into five ratios
(10%, 30%, 50%, 70%, 100%). These ratios are randomly and uniformly selected among the
whole training data so that every chunk contains documents of all intended clusters. For
k-Means, parameter settings are βparent = 0, 9 and αstruct = 1, 0. Hierarchical clustering is
conducted with βparent = 0, 2 and αstruct = 1, 0. The results obtained are shown in Table 7.5
and Figure 7.13.

Table 7.5: Evaluation results for the training size parameter
k-Means HC

Size pmicro pmacro emicro emacro pmicro pmacro emicro emacro
10% 0,597 0,648 0,342 0,295 0,283 0,776 0,756 0,238
30% 0,567 0,649 0,359 0,291 0,441 0,741 0,561 0,259
50% 0,576 0,699 0,360 0,254 0,213 0,924 0,903 0,087
70% 0,605 0,717 0,335 0,231 0,217 0,924 0,897 0,087
100% 0,593 0,705 0,342 0,241 0,219 0,925 0,895 0,086

Similar to the classification result, the training size had not much impact on the k-Means
clustering. In contrast, performance of the hierarchical clustering is influenced. Unexpectedly,
top micro averaged results are achieved with 30% of the training data. This might come from
the selected documents. However, macro-averaging results become better the more training
data is included.

200 7 Clustering of XML Documents

0,000

0,200

0,400

0,600

0,800

1,000

10% 30% 50% 70% 100%

k-Means purity HC purity k-Means entropy HC entropy

(a) Micro averaging

0,000

0,200

0,400

0,600

0,800

1,000

10% 30% 50% 70% 100%

k-Means purity HC purity k-Means entropy HC entropy

(b) Macro averaging

Figure 7.13: Effect of the training data on the purity and entropy (m-db-s-0)

Based on the results, it might be reasonable to use half of the available training data for
training only. In the context of applying clustering for information retrieval, the whole set of
documents has to be used anyway.

7.6.5 Experiment IV - How Does CAS Setting Affect the Purity and Entropy?

This experiment checks the effectiveness of the proposed clustering approaches on both,
the content and the structure of XML documents. Therefore, the CAS collections m-db-cs-1
and m-db-cs-2 are used. The goal is to find an appropriate αstruct setting for each approach.
According to the last experiments, βparent is set to 0, 9 for k-Means and 0, 2 for HC. The results
are displayed in Tables 7.6 and 7.7, with the corresponding Figures 7.14 and 7.15.

Table 7.6: Evaluation results for the αstruct parameter (m-db-cs-1)
k-Means HC

αstruct pmicro pmacro emicro emacro pmicro pmacro emicro emacro
0,0 0,574 0,623 0,375 0,328 0,236 0,784 0,861 0,249
0,1 0,603 0,641 0,336 0,303 0,263 0,794 0,833 0,236
0,2 0,612 0,634 0,329 0,304 0,280 0,797 0,814 0,234
0,3 0,601 0,636 0,338 0,309 0,292 0,791 0,803 0,243
0,4 0,611 0,683 0,330 0,262 0,302 0,740 0,792 0,305
0,5 0,603 0,670 0,336 0,272 0,311 0,694 0,781 0,347
0,6 0,607 0,663 0,329 0,273 0,319 0,617 0,764 0,379
0,7 0,576 0,694 0,355 0,246 0,327 0,588 0,746 0,390
0,8 0,603 0,717 0,337 0,230 0,342 0,586 0,725 0,396
0,9 0,613 0,700 0,325 0,243 0,352 0,568 0,703 0,403
1,0 0,590 0,689 0,343 0,252 0,358 0,570 0,694 0,404

Although m-db-cs-1 and m-db-s-0 are different form each other, the performance of the
approaches on both collections (when using the structure only) is nearly the same. k-Means is

7

7.6 Evaluation 201

0,000

0,200

0,400

0,600

0,800

1,000

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

k-Means purity HC purity k-Means entropy HC entropy

(a) Micro averaging

0,000

0,200

0,400

0,600

0,800

1,000

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

k-Means purity HC purity k-Means entropy HC entropy

(b) Macro averaging

Figure 7.14: Effect of CAS on the purity and entropy (m-db-cs-1)

nearly unaffected by higher weights put on the structure (difference of 3,9%-points). Only
macro averaging shows a slight tendency that structure helps more than the content (ranging
9,4%). For HC, micro averaging shows that including structure linearly increases clustering
performance of HC: The more weight is put on the structure, the higher the performance
(difference of 12,2%-points). The same effect turns out applying macro averaging (difference
of 22,9%-points).

Note that a setting of αstruct = 1, 0 uses the structure of documents only, while αstruct = 0, 0
considers the content only. The classification evaluation showed that pure structure-based
approaches clearly outperform content-based ones. Interestingly, structure-only and content-
only approaches nearly obtain the same results during clustering. Best results are achieved
by combining structure and content information. From this point of view, clustering seems
better suited for content-based retrieval tasks than classification.

Table 7.7: Evaluation results for the αstruct parameter (m-db-cs-2)
k-Means HC

αstruct pmicro pmacro emicro emacro pmicro pmacro emicro emacro
0,0 0,191 0,191 0,895 0,894 0,172 0,253 0,943 0,840
0,1 0,209 0,229 0,850 0,833 0,174 0,246 0,943 0,847
0,2 0,209 0,215 0,849 0,850 0,173 0,329 0,941 0,752
0,3 0,209 0,233 0,849 0,825 0,171 0,271 0,939 0,790
0,4 0,211 0,225 0,848 0,835 0,171 0,252 0,938 0,826
0,5 0,206 0,240 0,848 0,825 0,172 0,243 0,938 0,840
0,6 0,208 0,252 0,849 0,803 0,173 0,231 0,937 0,852
0,7 0,211 0,230 0,847 0,832 0,173 0,236 0,936 0,851
0,8 0,209 0,225 0,849 0,838 0,174 0,227 0,934 0,853
0,9 0,209 0,225 0,849 0,831 0,175 0,223 0,931 0,858
1,0 0,205 0,226 0,849 0,832 0,177 0,226 0,931 0,870

202 7 Clustering of XML Documents

0,000

0,200

0,400

0,600

0,800

1,000

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

k-Means purity HC purity k-Means entropy HC entropy

(a) Micro averaging

0,000

0,200

0,400

0,600

0,800

1,000

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

k-Means purity HC purity k-Means entropy HC entropy

(b) Macro averaging

Figure 7.15: Effect of CAS on the purity and entropy (m-db-cs-2)

On the second CAS collection m-db-cs-2, both approaches perform poor. The structural
parameter αstruct becomes irrelevant. The reason for this behavior is the document collection
itself, which seems unsuited for the evaluation of clustering approaches. This is because the
documents are too similar in both regards, their structure and their content. Other INEX’05
participants came to a similar conclusion about this document collection.

Hand in hand with the findings for classification performance, the content turns out to
be less important than the structure for clustering. Best results are achieved by αstruct values
between 0, 8 and 1, 0. However, this could be true only for particular collections where the
content is relatively poor as is the case of the MovieDB.

7.6.6 Comparison

A final experiment compares the approach of this work to other state-of-art methods that
have been applied on the same collection. Two other approaches presented at the INEX 2005
workshop are considered. A first work by Nayak and Xu [186] applied the XCLS clustering
algorithm based on the LevelSim global criterion function. The second work was done by
Vercoustre et at. [247], who represent documents by sets of their subpaths and apply the
dynamic clouds clustering algorithm. Unfortunately, no comparable results are available that
take structure and content into account. Thus, the evaluation is carried out only for the SO
corpora.

The four SO corpora (m-db-s-0, m-db-s-1, m-db-s-2, and m-db-s-3) are used for evaluation.
The two top parameter settings, one maximizing micro averaging and the other one maxi-
mizing macro averaging, are chosen for k-Means (βparent = {0, 2; 0, 9}) and for hierarchical
clustering (βparent = {0, 2; 1, 0}) HC. Since all corpora contain structure only, αstruct is set to
1, 0. The results are presented in Table 7.8

7

7.7 Conclusion 203

Table 7.8: Comparison of the INEX 2005 evaluation results I
k-Means HC

Corpus pmicro pmacro emicro emacro pmicro pmacro emicro emacro
m-db-s-0 a 0,602 0,638 0,337 0,309 0,219 0,925 0,895 0,086
m-db-s-0 b 0,598 0,721 0,339 0,229 0,588 0,657 0,342 0,272
m-db-s-1 a 0,621 0,650 0,325 0,307 0,236 0,925 0,867 0,085
m-db-s-1 b 0,566 0,723 0,372 0,227 0,588 0,657 0,342 0,272
m-db-s-2 a 0,640 0,662 0,308 0,289 0,331 0,751 0,753 0,276
m-db-s-2 b 0,605 0,719 0,336 0,226 0,589 0,658 0,342 0,271
m-db-s-3 a 0,616 0,655 0,322 0,291 0,400 0,751 0,634 0,237
m-db-s-3 b 0,609 0,730 0,331 0,216 0,588 0,657 0,342 0,272
a βparent = 0, 2 (k-Means), βparent = 0, 2 (HC)
b βparent = 0, 9 (k-Means), βparent = 1, 0 (HC)

Table 7.9 summarizes the results obtained by Nayak and Xu, and Vercoustre et al.
According to the micro averaging results, the hierarchical clustering approach HC is least

Table 7.9: Comparison of the INEX 2005 evaluation results II
Nayak and Xu [186] Vercoustre et al. [247]

Corpus pmicro pmacro emicro emacro pmicro pmacro emicro emacro
m-db-s-0 0,604 0,794 0,325 0,171 0,732 0,841 0,203 0,136
m-db-s-0 0,589 0,786 0,334 0,174 0,732 0,841 0,203 0,136
m-db-s-1 0,603 0,682 0,331 0,268 0,688 0,804 0,326 0,226
m-db-s-1 0,596 0,769 0,335 0,203 0,707 0,835 0,256 0,144
m-db-s-2 0,590 0,720 0,335 0,249 0,688 0,758 0,296 0,209
m-db-s-2 0,592 0,728 0,335 0,241 0,458 0,501 0,487 0,446
m-db-s-3 0,592 0,756 0,340 0,197 0,623 0,714 0,316 0,238
m-db-s-3 0,589 0,707 0,340 0,224 0,553 0,636 0,527 0,438

effective. k-Means performs slightly better than the approach presented by Nayak and Xu.
The approach of Vercoustre et al. clearly outperforms all other approaches.

Applying macro averaging, HC achieves best results. Vercoustre et al. obtain the second
best results. Nayak and Xu obtain slightly better results than k-Means. In contrast to the other
approaches, the noise introduced in the collections had no effect on the performance using
both, k-Means and HC clustering.

7.7 Conclusion

This chapter presented two XML clustering approaches: k-Means and a hierarchical clustering
algorithm. Both approaches operate on supertree representations, which subsume all structure
and content features of a set of XML documents. Supertrees are created in a simple and fast
manner, where the order of documents included in a supertree is irrelevant. The represen-
tation allows fast computation of similarity of ordered and unordered documents. Further,

204 7 Clustering of XML Documents

supertrees can be merged to support hierarchical clustering algorithms. Both approaches
are evaluated using real world data. A comparison to other approaches on the same data
shows promising results. In contrast to classification, inclusion of a document’s content
improved clustering performance. Thus, information retrieval may benefit from content-aware
clustering. From the information retrieval point of view, hierarchical clustering seems to be a
promising candidate.

8

Chapter 8 The mind is not a vessel to be filled, but a fire to be ignited.

Plutarch

Overview of the X-DOSE System

Based on the facets discussed in the previous chapters, this chapter describes the system
implemented that covers those aspects. X-DOSE, the XML-Document Oriented Search Engine,
is based on a client-server architecture. A server processes incoming indexing and retrieval
requests. Query results are sent to the client which displays the document components
retrieved. Single results can be selected and displayed in a document view which highlights
relevant components in their contexts. By browsing the document tree, users are able to
extend or refine initial queries by adding new constraints. A classification machinery supports
the user in creating groups of related elements. Both, the architecture of the server and
the client are described in detail. Before explaining the system proposed, existing retrieval
systems operating on structured documents are reviewed in Section 8.1.

8.1 Related Work

8.1.1 HyREX

HyREX [81, 18, 102, 87], the Hyper-media Retrieval Engine for XML, is a system developed by
Gövert and Fuhr at the University of Dortmund. It relies on the XIRQL [86] query language,
which extends the XPath subset of XQuery by introducing features for term weighing,
relevance-oriented searching, data types and vague predicates, and semantic relativism.
During query calculation, XIRQL queries are first translated into a path algebra, which
is optimized and processed by the database engine. HyREX aims at retrieving the most
specific component of an XML document according to Chiaramella’s model for multimedia
information retrieval [51]. To achieve that, non-overlapping sets of elements are a priori
defined as index nodes (see Figure 8.1). All index nodes are retrievable units for queries.
From the representation point of view, indexing nodes are considered as individual documents
(atomic units) that are retrievable units for queries. Term weights are computed applying the

205

206 8 Overview of the X-DOSE System

standard vector space model. During retrieval the system matches the query with each of
these index nodes and ranks them according to their relevance.

bookclass=“H.3.3“

author

heading section

title chapter

heading

John Smith XML Retrieval

Introduction

This...

XML Query
Language XQL

Examples Syntax

We describe
syntax of XSLheading

sectionheading

chapter

element

text

attribute

[1]

[2] [3]

[4] [5]

Figure 8.1: XML document tree and corresponding indexing objects [85]

The content of an XML document is restricted to the leaf nodes of the document tree. It
is, therefore, necessary to infer representations of inner index nodes based on the leaf nodes.
This is done bottom-up and recursively, such that the representation of each intermediate
node is based on the representations of its descendant node, relying on event keys and event
expressions [94]. Basically, the weight of terms of an ascendent node is computed using the
so-called inclusion-exclusion mechanism [27, pp. 20]. Assuming term independency, the merge
(join) probability of a term lying in two nodes is computed using a modified version of the
traditional formula:

P(asc ∨ (f · desc)) = P(asc) + P(desc) · f − P(asc) · P(desc) · f (8.1)

where asc and desc indicate a node and its descendant node containing a term t, while
f ∈ [0, 1] is an augmentation factor used to moderate the weights propagated upwards
to the ascendant node. Different index nodes may be assigned different augmentation
factors. In their experiments, Gövert and Fuhr found that augmentation weights chosen from
[0, 3; 0, 7] achieved best results. Systematic methods like Amanti’s approach of divergence
from randomness [17] can be used to identify proper augmentation factors automatically.
However, those augmentation factors are pre-estimated using empirical data, which makes
weight computation dependent on the corpus. Thus, these values cannot be claimed valid
with other data.

Further enhancements of HyREX include bilingual information retrieval for English and
German [101], result presentation issues [109, 108, 87], and performance improvements (e.g.,

8

8.1 Related Work 207

index compression) [80, 79]. General information about HyREX is also available via the
Internet1.

8.1.2 HySpirit

HySpirit [207, 208, 95, 152, 209], the HYpermedia System with Probabilistic Inference for
the Retrieval of InformaTion, is a scalable hypermedia framework developed by Rölleke
et al. The system is based on a probabilistic relational algebra. Based on a probabilistic
relational algebra, the system processes large scale retrieval tasks on distributed databases
in parallel. In this context, the notion of a local representation of a document refers to the
representation of a given element within a sub-collection (independent database), whereas
a global representation describes the collection as a whole (all databases). Each element in
a document tree is regarded as an atomic unit (separate document). Thus, a level in the
hierarchy corresponds a collection of atomic units.

A kind of t f · id f formula is adapted to compute term weights like in traditional informa-
tion retrieval. Since the concept of a document is not clear, term frequency t f and inverse
document frequency id f are interpreted on the basis of XML elements at a certain level in the
collection’s hierarchy. To do that, an aggregation function is used to combine the id f values
of different sub-collection elements using the formula:

id f (termj) = log

n
∑

i=1
Ni

n
∑

i=1
ni,termj

(8.2)

where Ni is the number of direct subdocuments (child elements) in the collection, and ni,termj is
the number of documents in that collection referring to termi. During retrieval, the mechanism
of augmentation is applied to represent the content of elements made up of the contents of
their sub-contexts. Target elements of queries, the elements retrieved, are processed by a
post-retrieval filtering task.

Database pre-selection based on a cost-function and a content-based measure estimates
the efficiency of the sub-collections and speeds up the overall data access. Term selection
(stopwords) as well as context selection (stop-contexts) are used to improve indexing and
retrieval. Based on database accessibility and access costs, two different strategies combine
the query and database dimension in distributed environments (parallel query computation):

� For each query, the system retrieves from the set of databases.
� For each database, the system runs the set of queries.

1http://www.is.informatik.uni-duisburg.de/projects/hyrex/ (15.08.2008)

208 8 Overview of the X-DOSE System

8.1.3 JuruXML

Juru [44] is a full-text information retrieval system developed by Carmel et al. at the IBM
Research Lab in Haifa. Juru is implemented in Java and operates on an inverted list index.
Novel pruning methods and compression techniques are applied, reducing the size of the
index significantly while maintaining high precision.

In 2002, Mass et al. [176] extended Juru by means of XML retrieval features to JuruXML.
Their approach is based on querying XML documents via pieces of XML documents, so-called
XML fragments, rather than inventing a new query language. This differentiates JuruXML
from other systems. Query results returned contain not only perfect matches but matches
that are ‘close enough’, according to some relevance measure. Most of the logic is put to the
ranking mechanism, targeting intuitive querying and user friendliness.

Within XML fragments, elements, attributes, and contents can be augmented by prefixes for
mandatory, prohibited, and phrase terms. Optionally, a list of target elements to be returned
can be included. For better relevance ranking and approximate matching, an extension of
the vector space model described in [45] is proposed. In contrast to global term weights, the
content of an XML component is expressed by pairs of terms ti and contexts cj, where the
context refers to the XPath of the component (e.g., /article[1]/abstract[1]). A document
is considered relevant if at least one path (and its content) of the document matches at least
one path (and its content) of the XML fragment (query). The match of paths cr (document
and query paths) is expressed by the longest common subsequence. The similarity between a
document d and a query q is given by

sim(d, q) =
∑(ti ,cj)∈q ∑(ti ,ck)∈d wd(ti, ck) · wq(ti, cj) · cr(cj, ck)

||d|| · ||q|| (8.3)

wd(t, c) and wq(t, c) denote the weight of term t in context c in the document d and the query
q, cr(cj, ck) is the similarity of the contexts cj and ck, and ||d|| (resp. ||q||) denotes the number
of contexts in d (resp. q). To this stage, JuruXML takes term statistics only on the document
level. Thus, matching and ranking are performed for complete documents only.

8.1.4 XXL Search Engine

Theobald and Weikum describe the XXL Search Engine in [236, 237]. It is based on the XXL
(fleXible XML search Language) query language, combining standard t f · id f weighing and
ontology searching. The index structure consists of three layers: an element path index EPI,
an element content index ECI, and an ontology index OI.

In a first step, XXL queries are decomposed and represented as a graph. After that, the
order of the subquery evaluation is chosen. Then, the order of the internal path expressions

8

8.1 Related Work 209

for each subquery is decided. Subqueries are evaluated making best usage of the three indices.
Finally, intermediate subquery results are composed into a global result.

8.1.5 K2 Search Engine from Verity

Tong [238] presented an approach for XML retrieval using K2, an enterprise-class document
retrieval platform from Verity, Inc.2 Although the system does not have an explicit representa-
tion for the document structure, ‘zone indexing’ is applied to distinguish different regions
within a document.

Queries are formulated in the Verity Query Language (VQL), a rich and expressive query
language that supports standard keyword operators, boolean operators, and weighing. Since
the system does not allow to return pointers to specific document elements, a path reporting
strategy was adopted that retrieves either the first or the smallest XML element found. An
evaluation at INEX 2002 showed that further investigation and revision is needed. The
performance of the K2 search engine was clearly lower than that of other systems addressing
the document structure explicitly.

8.1.6 Cheshire II

Cheshire II [161] is an XML retrieval system proposed by Larson, formerly developed as an
online library catalog system. It is based on a client-server architecture with an embedded
database engine. Features include multiple, scriptable clients, and relevance feedback.

Each node in the XML tree is assigned an index data structure (B-TREE), an extraction type
(e.g., KEYWORD, EXACTKEY, DATE), and its type of normalization (e.g., STEM, NONE).
Queries are represented applying stopword removal, stemming, and word replacements
exploiting a wordnet dictionary and thesaurus. Logistic regression is used to match, rank,
and retrieve document components of any granularity.

The probability of relevance R given a query Q and a document D is expressed by
P(R|Q, D). Since Cheshire II supports probabilistic and boolean searches, a kind of ‘Fusion
Search’ merges the subsets retrieved from different searches to a global result, defined as

P(R|Q, D) = P(R|Qbool , D) · P(R|Qprob, D) (8.4)

where P(R|Qbool , D) is the probability estimate from the probabilistic portion of the search,
and P(R|Qprob, D) is the estimate from the boolean operator.

2http://www.verity.com (15.08.2008)

210 8 Overview of the X-DOSE System

8.1.7 PADRE

The PADRE (Parallel Document Retrieval Engine) system [126, 136] was developed by Hawk-
ing at the Australian National University of Canberra in 1994. It was the first text retrieval
system that implemented indexing, query processing, ranking, and retrieval of text documents
on parallel and distributed systems for terabyte-scale collections. PADRE views document
retrieval as an inherently parallel problem, since a document collection can be divided into N
sub-collections searched independently. The only exception to this are global term statistics
(i.e., inverse document frequency) and ranking, discussed by Bailey and Hawking [22].

Mechanisms for load balancing and automatic document distribution improve response
time considerably. Further performance improvements are achieved by single-pass scan-
ning of multiple alternate patterns, fast indexing methods, and decreased collection load
times [133, 131]. TREC-5 experiments on automatic query generation, distance-based rel-
evance scoring, server selection, and result merging are described in [135]. A multi-user,
time-sharing implementation developed in 1996 applied natural language processing for au-
tomatic query generation to prose specification texts [133, 132]. Further developments led to
WWW capabilities [132] and retrieval of OCR-scanned texts [128]. The initial system already
allowed restricted searches on marked sections like authorname or title [127, 133]. Based
on compressed inverted file indices, former versions of PADRE like PADRE97 [130, 129] and
PADRE99 [134] outperformed many other state-of-the-art retrieval systems. Today, PADRE is
the core of CSIRO’s (Commonwealth Scientific & Industrial Research Organisation3) Panoptic
Enterprise Search Engine4.

Vercoustre et al. [248] extended PADRE for XML retrieval. In their work, they added
additional database techniques to the underlying text retrieval technology. The definition of
meaningful retrieval components is implemented as a pre-indexing task. Before indexing,
XML documents are split into retrievable units. Both, the complete documents and the split
document components are treated as atomic units.

During retrieval, queries are first translated into PADRE syntax. Terms lying in specific
XML components are mapped onto corresponding PADRE fields, using a set of metadata
classes. This avoids semantic misinterpretation of same-named relational data fields. Dates
and texts are defined as basic types. Progressive weakening of query constraints supports
retrieval of XML components not fulfilling all conditions. Results returned by PADRE are sent
to an extractor unit. According to the query constraints, the extractor re-ranks the PADRE
results and presents them to the user.

Currently, an implementation of the system is in productive operation at the Australian
National University in Canberra. It is used for email and intranet retrieval, and demonstrates

3http://www.csiro.au (24.08.2004)
4http://www.panopticsearch.com (24.08.2004)

8

8.2 Architecture of X-DOSE 211

fast indexing and query processing on an inexpensive hardware. Additional information
about PADRE is available via the Internet5,6,7.

8.2 Architecture of X-DOSE

Taking the aspects discussed in Chapters 3 to 7 into account, the XML-Document Oriented
Search Engine (X-DOSE) was developed. The focus has been put on the natural language text
representation, and the retrieval improvements achieved by clustering of XML components.
X-DOSE is fully implemented in Java and consists of three modular subsystems:

� An external database server stores the documents and their corresponding representa-
tions in a relational database.

� The server processes index, query, and classification requests that are transmitted via
the Remote Method Invocation (RMI) protocol.

� A client starts index requests, aids the query formulation, enables classification of
arbitrary components, and displays the results to the user.

An overview of this architecture is given in Figure 8.2. Triggered by an index request, the
server obtains the document from the internet and stores it in the database. During querying,
the information in the database is used to retrieve relevant document components. The results
are transferred to the client, which displays them to the user. Additionally, links referring to
the original source document are provided.

Server

Indexing

Relational Storage

Structure
Meatdata
Content
Indices
Classes
Clusters

RetrievalUser

Client Database

Result
Display

Query
Formulation

Index
Request

document

back-reference

URL

query

result

document

R
M

I
R

M
I

representation

document
representation

Class
Manager ClassificationR

M
I

class

Internet

assign

document
representation

classify

result

classes
assignments

Figure 8.2: Architecture of X-DOSE

5http://www.csiro.au (15.08.2008)
6http://www.panopticsearch.com (15.08.2008)
7http://deneb.soi.city.ac.uk/ andym/PADRE/tarpubs.html (15.08.2008)

212 8 Overview of the X-DOSE System

In the sequel, the client and its tasks, index requesting, query formulation, result presenta-
tion, and class management are described in Section 8.3. Details about the architecture of the
server and its corresponding tasks, indexing, retrieval (including clustering), and classification
are presented in Section 8.4. Final remarks and future extensions conclude the chapter.

8.3 The Client

The client provides the user with a graphical interface and communicates with the server. An
overview of the architecture is given in Figure 8.3. This section describes the main tasks of
the client: indexing, querying, displaying of results, and class management.

G
ra

ph
ic

al
 U

se
r I

nt
er

fa
ce

Index Request URL

Result
browsing

Result
refinement

Result selection

Result Display

User

Server

query, result set

Client

R
M

I C
om

m
un

ic
at

io
n

Se
rv

er

Query Formulation query

Document
browsing

result

refined query

Class Manager

Class Browser Classifier

query

URL

class

class assignment

result

result set

class information

Figure 8.3: Architecture of the client

8.3.1 Index Request

Proper management of the documents indexed is essential to maintain a consistent information
pool. Figure 8.4 shows the user interface of the system handling the indexing objects. New
documents of different sources (e.g., local files and directories, HTTP, FTP, HIS, etc.) and
of various types (e.g., TXT, XML, HTML, PDF, etc.) can be added to the index. Existing
documents may be reindexed and obsolete documents removed.

8.3.2 Query Formulation

The client supports three different types of queries: simple keyword queries, free text queries,
and complex XOR queries. According to the query type, the client offers three different query
interfaces.

8

8.3 The Client 213

Figure 8.4: Index interface of the client

Keyword queries (see Figures 8.5) are considered as a set of search terms (google-like
interface). Optionally, document components searched (and retrieved) can be stated to
restrict the results to certain XML components. In contrast, free text queries (see Figures 8.6)
are formulated as a complete piece of text (e.g., a paragraph). The system retrieves those
components that are most similar to the content provided. Both of these query types are
translated internally into XOR queries. Thus, this section concentrates on the description of
this type of queries. XOR queries (see Figure 8.7) pose the most complex type of queries. These
queries allow searches of metadata, structure, and content information. Several parameters
described below provide the possibility to tune the query results computed.

The XOR query language was already described in Section 2.3.5 and Section 2.7. These
queries are composed of a sequence of subqueries, where each subquery result serves as a
filter for subsequent subqueries. Consider the XOR example given in Listing 8.1:

Listing 8.1: XOR query example
� �

1 /DOC[meta(.,documentMeta.title like ’\%Computer\%’)]

2 //SEC[(about(.,retrieval) AND about(./FRA,information))]

3 /FRA[about(.,processing data storage instructions logic)]
� �

For better readability, each subquery is written in a separate line. The first subquery retrieves
documents with titles containing the term computer. Within those documents, the second
subquery refines the search to sections at any level (e.g., subsection, subsubsection, etc.) that

214 8 Overview of the X-DOSE System

Figure 8.5: Keyword query interface of the client

Figure 8.6: Free text query interface of the client

include the term retrieval and further contain a fragment that deals about information.
Out of these sections, the third subquery retrieves all fragments that contain any of the terms

8

8.3 The Client 215

Figure 8.7: XOR query interface of the client

processing, data, storage, instructions, or logic. This set of final fragments is returned to
the user as the result of the query. Thus, the retrieval result is defined by the last subquery
component.

As indicated by the second subquery in the example, two different aspects have to be
distinguished: components searched (search path, support elements) and components re-
trieved (retrieval path, target elements). The search path specifies the components that
are matched against the current query. In contrast, the retrieval path specifies the com-
ponents that are returned to the user. In most cases, these two paths are equal (e.g.,
/FRA[about(.,processing data storage instructions logic)]. However, the second sub-
query //SEC[about(.,retrieval) AND about(./FRA,information)] is an example where
the retrieval path //SEC is a subset of the search path //SEC/FRA. Note that the search path is
always the same or more specific than the retrieval path.

In order to avoid long and confusing single-line queries, query formulation is done by
chaining XOR subqueries in the client interface. This concept is closely related to the natural

216 8 Overview of the X-DOSE System

way of questioning, where a query is successively refined by introducing additional constraints
(subqueries). Each subquery result operates as a strict filter, allowing only elements of the
same or smaller granularity to be retrieved. This improves the performance without skipping
relevant components. Furthermore, the chains are used to reweigh elements regarding to a
user-defined generality parameter.

The system processes an extended XOR query syntax that supports different kinds of
matching. An about(path,keywords) predicate matches all keywords against a component’s
content. Table 8.1 summarizes the modifiers to express different semantics of keywords.
+ (MUST) and - (MUST NOT) indicate whether a term must or must not be present in a
component. More complex is the treatment of quoted keywords. For instance, books and
"books" have to be treated differently. While books is stemmed and matches the term book in
documents as well, "books" searches for contents that explicitly contain the term as it is (a
plural noun) in the full text. No kind of linguistic transformation is applied on these terms.
Quoted multi-terms are particulary difficult to process. Consider "red cars". The single-term
red is an adjective. Thus, it may not be included in the index. In another context (e.g., “Red
Cross”), it is part of a proper noun and, therefore, may exist in the index. The approach
proposed treats quoted keywords in two steps: First, all terms are treated as unquoted
and their similarity is computed using the standard vector space model of single-term and
multi-term indices. Second, instead of searching the indices, a string matching strategy is
applied on the full text of the component to re-rank the results. Combinations of +/- and
quoted expressions are treated as if all single-terms within the quotes are separately marked
by +/- and an initial result set is computed. This result is reduced to those components that
exactly contain the quoted expression (using string matching).

Table 8.1: Different semantics of keywords
Keywords Semantics

information retrieval techniques All terms optional

+information +retrieval -techniques
information and retrieval must occur,
techniques must not occur

"information retrieval" techniques
"information retrieval" optionally occurs as multi-term,
all terms are optional single-terms

+"information retrieval" techniques
"information retrieval" must occur as multi-term,
information and retrieval must both occur as single-terms,
techniques is optional

+"running" "running" must occur unstemmed in the text (string matching)

Similar to the about() predicate for searching contents, an extra meta(path,condition)

search predicate is included for metadata searches. It allows, for example, to efficiently
deal with queries like: “return all documents written by Einstein” using the command
//DOC[meta(.,author like ’%Einstein%’)]. The result for this query is computed by a

8

8.3 The Client 217

single SQL select statement and, thus, is answered by the database engine without further
processing.

In addition to the XOR subquery chains, several query parameters can be specified by the
user (see Figure 8.7):

� Maximum results (maxRes): Defines the maximum number of results returned. Its
values range from 1 to MAXINT.

� Minimum similarity (minSim): Defines the minimum similarity of results returned
∈ [0, 1], truncating the list of results below a given similarity threshold.

� Content importance (ci): Defines the influence of the content similarity and the meta-
data similarity on the calculation of the retrieval status value (rsv, element relevance).
This parameter ranges from 0, 0 (only simMeta) to 1, 0 (only simCont). The final rsv
(ranking criteria) is computed as rsv = simCont ∗ ci + simMeta ∗ (1, 0− ci).

� Generality factor (g f): This parameter (∈ [0, 1]) influences the retrieval granularity.
The higher the parameter, the more weight is put on the previous subquery relevance.
Let q1..n be a chain of n subqueries. Then, rsv is recursively computed as rsvi =
rsvi−1 ∗ g f + rsvi ∗ (1, 0− g f).

� Result type (rt): Defines which kind of results is obtained: focused or unfocused.
Unfocused retrieval returns all relevant components, including multiple results of the
same document that are in a structural relationship (e.g., the section and its child
fragment) to each other. In contrast, focused retrieval only returns the most relevant
component of a branch in the document tree. Overlapping elements in the result set
are discarded. Note that focused retrieval may also retrieve multiple components of
the same document. This strategy reduces the number of elements returned drastically.
Figure 8.8 shows the results of the same document according to the result type. Green
encircled components are returned. The number in the nodes indicate their relevance
(rsv).

8.3.3 Result Display

After a query is computed by the server, the list of results is returned to the client. The results
are ranked according to their retrieval status value in decreasing order. Besides metadata
similarity metaSim and content similarity contSim, the retrieval status value further combines
the similarities of chained subqueries (described in the previous section). Figure 8.9 shows
the interface for browsing the results.

If the user selects a particular result (e.g., a relevant subsection), the system displays
the whole document in an explorer-like view (see Figure 8.10). Relevant components in

218 8 Overview of the X-DOSE System

0.3

0.4

0.70.6 0.0

0.30.9

0.2

0.00.5

0.80.0

(a) Unfocused retrieval

0.3

0.4

0.70.6 0.0

0.3

0.2

0.0

0.0

0.90.5

0.8

(b) Focused retrieval

Figure 8.8: Result types

Figure 8.9: Result display of the client

the document are highlighted using different colors reflecting the degree of similarity of
the matched elements. The document’s structure is presented as an expandable tree, where
the selected element is expanded and focused. A graphical representation at the bottom of

8

8.3 The Client 219

Figure 8.10 assists the user in understanding the result’s granularity and substructure, similar
to the TextBars presented in Section 2.8. Besides outlining the document structure, it can
be used alternatively to navigate through the document. The actual component selected is
highlighted using a red border. Each component is filled with up to two different colors that
reflect its metadata (top half) and content (bottom half) similarity. In the figure, two different
kinds of yellow are used. Having similarity values available on the screen in both, the table of
contents and the graphical representation, the document can be browsed efficiently.

Figure 8.10: Result document browser of the client

In most cases a final search result is achieved through iterative refinement of the query,
where the number of results is reduced stepwise by adding new information to the query.
To enable such a feature, the user may include a list of preliminary results in a query. If
such a result is set, it acts as a strict filter during query processing, avoiding a computation
starting from scratch. The system offers the possibility for the user to save (partial) results, R,
in response to her/his query Q at a given working session. In future sessions, the user might
refine R via a refined query Q′. For this purpose, the query Q′ along with the result set R can
be introduced to the system. If so, R is the sub-collection of elements to be searched instead
of the whole collection, and consequently a refined result set R′ is returned.

220 8 Overview of the X-DOSE System

The information presented by the client solely comes from the documents stored in the
database. Documents found highly relevant to the query can be opened in an external
application (e.g., a web browser or specific file browser). Therefore, the reference stored in the
sourcepath attribute in the METADATA block of the DOC element is used to acquire the original
source directly.

8.3.4 Class Manager

The class manager provides methods to create and delete classes of document components of
arbitrary granularity. The main management interface is shown in Figure 8.11). Details about

Figure 8.11: Class manager of the client

the components assigned to a single class are shown by the class browser (see Figure 8.12).

The main concern of the classification system is, besides the compilation of related contents,
the automatic identification of document components that are similar to the components
of that class. A classification process matches all components known by the system to
the members of the class. If the average similarity exceeds a user-defined threshold (e.g.,
simavg > 0, 0), the component is added to the results, which is sorted according to the
similarity computed. The result of the classification process (similar to the result of a retrieval
process) is presented to the user by the interface illustrated in Figure 8.13. By manually
assigning result items to a class, each client creates its own classification system. Note that

8

8.3 The Client 221

Figure 8.12: Class browser of the client

Figure 8.13: Classification result browser of the client

the top two classification results in Figure 8.13 are the same components initially assigned to
that class (Figure 8.12).

222 8 Overview of the X-DOSE System

8.4 The Server

The main components of the server include an RMI communication server, a threadpool of
indexing tasks, a threadpool of retrieval tasks, a threadpool of classification tasks, and a direct
data request unit. Figure 8.14 shows the five components and their interconnections.

R
M

I C
om

m
un

ic
at

io
n

Se
rv

er

Index Thread

DataMapper DataStorer DataIndexerURL

NLP Analysis Term weighing

Result
computation

query

Retrieval Thread

resultClient

Relational Storage

Structure
Meatdata
Content

Database

document
representation

document
structure
metadata
content

representation

Server

DataCollector

Raw
XML files

Mapped
XML files

document content

document structure, content, and metadata

docum
ent

Query
expansion

Classification Threadresult
document

retrieval unit

iefQuery Parser

Direct Data Request
data data

class
class

representation

Figure 8.14: Architecture of the server

The RMI server processes incoming requests and initiates a new thread for each call. The
goal of this concept is to achieve a high degree of parallelism. The maximum number of
parallel threads depends on the performance of the hardware and is configured in a global
configuration file. From the software architecture point of view, both index and retrieval
tasks use a pipelined pattern of processing units (see Figure 8.14). For portability and tuning
purposes, threads and single processing units are independently configurable via separate
configuration files.

During indexing, requested documents are downloaded by the DataCollector. The com-
plete information of the source document is kept in a temporary repository of raw XML
documents. The DataMapper transforms the raw files into the generic document format and
places them in another temporary repository of mapped XML documents. For each raw
document format acquired by the DataCollector, an XSLT is defined for the transformation
which depends on the original document source format. Afterwards, a DataStorer analyzes
the transformed XML documents. Document structure, metadata, and content are stored in

8

8.4 The Server 223

the relational database. Finally, a DataIndexer computes multiple representations of the XML
components that contain plain natural language text.

As soon as a query is sent to the system, the query content is analyzed in the same way
the DataIndexer processed the textual contents previously. If possible, the query is expanded
by additional search terms that may improve retrieval results. Query terms are weighed
according to the XML components addressed. Documents and document components in the
database are matched against the query, and relevant results are ranked in decreasing order.
The final result set is transmitted to the client. Users can refine their search within the set of
results retrieved, browse relevant documents, and access original source documents by using
the references stored in the database during indexing.

In order to classify documents and document components, the client provides an interface
for adding and removing classes. Each of the classes contains a number of elements (either
documents, sections, or fragments) assigned to that class. By comparing the components in
the database to the members of a class, a similarity-ranked result set is computed. Based
on the results, users may further assign elements to the class currently being investigated.
Applying this process recursively, groups of closely related and user-specific contents are
grown continually.

A set of general database requests necessary for the client is supported by a database
abstraction layer. Such direct data requests allow fast read and write access to the database
via the RMI communication server.

8.4.1 Indexing

This section overviews the indexing task including document acquisition, document mapping,
document storage, and computation of the indices.

DataCollector

The task of the DataCollector is to access the documents requested and to store them as
lossless XML documents in the raw XML document repository. In this repository, documents
are only held temporary during the download. Supporting scalability, the DataCollector can
be run in two modes, a single file mode and a collection mode.

The architecture of the DataCollector is given in Figure 8.15. The abstract DataCollector
performs five processing steps. First, a data connection between the server and the source doc-
ument is established, possibly including login information or connection-relevant parameters.
The document is transferred as an XML tree into the main memory of the server. Optionally,
filtering of irrelevant information reduces the stored data load (e.g., file owner, access rights).
Data conversion is carried out to get rid of tags (e.g., HTML markup, formatting information)
within textual contents. Finally, the complete XML document is stored in the raw XML

224 8 Overview of the X-DOSE System

document repository. Currently, the system includes a DataCollector implementation for plain
text documents, XML documents, HTML documents, and Hyperwave Information Server
(HIS) documents. Further extensions may include other formats such as PDF documents,
MS-Word documents, or PostScript documents.

XMLDataCollector HISDataCollector PDFDataCollector DOCDataCollectorHTMLDataCollector

 URL
document request

Raw
XML document

...

Data Connector

AbstractDataCollector

Data Transfer Data ConversionData Filtering XML Storage

TXTDataCollector PSDataCollector

Figure 8.15: The DataCollector

DataMapper

The DataMapper transforms the raw XML documents into the generic XML document format
described in Section 3.3. For each of the raw XML document formats (i.e., the source document
formats), a separate XSLT stylesheet is defined for the mapping procedure. This simplifies the
transformation process, requiring a single coding language (XSL) interpreted by a common
XSLT engine only.

Since the INEX 2005 document collection does not account for explicit linkage within or
among documents (at least it is not evaluated), the linking functionality of the generic schema
is neither exploited in this section nor in the evaluation chapter.

Figure 8.16 explains the three main components of the DataMapper. An XML parser
processes the XML documents and outputs them to the XSLT transformation. After trans-
formation, the XML document conforming to the generic document format is stored in the
mapped XML repository.

INEXDataMapper HISDataMapper PDFDataMapper DOCDataMapperHTMLDataMapper

 Raw XML document,
document type

Mapped XML
document

...

XML Parser

AbstractDataMapper

XSLT
Transformation XML Storage

PSDataMapper

Figure 8.16: The DataMapper

DataStorer

After the documents are transformed into the generic document format, the DataStorer stores
the structure, metadata, and content in the relational database. This step involves typing

8

8.4 The Server 225

of metadata elements and content elements. Figure 8.17 overviews the components of the
DataStorer.

Mapped XML
document Relational databaseXML Parser

DataStorer
Structure,

metadata, and
content Handler

Database
Storage

Figure 8.17: The DataStorer

A global view on the database is depicted in Figure 8.18. The tables files and
file_processings keep track of the documents indexed and their processing status. The cen-
tral XMLstructure table holds the structure of the XML documents. XML paths and XML tags
are kept in separate tables. Substructure entries such as links and mathematical environments
within a fragment’s content are stored in the XMLsubstructure and XMLsubstructureContent

tables. Metadata (Metadata table) and content (XMLstructureContent table) are associated
with the document structure, where both entries are optional. In the current implementa-
tion metadata entries are considered as unstructured (flat). Different representations of the
contents are stored using the vector space model representation framework (gray rectangles
comprising blue contents), which is explained in the next section.

files
-ID
-server_type
-server_id
-data_type
-data_id
-filename_raw
-filename_trans

file_processings
-type
-timestamp

1

0..1

describes1

0..1

belongs

1 0..1

belongs1

0..*

consists of

0..*

1

has

1

*

has

1

0..* has

0..1

1

represents

11..*belongs

fragmentMeta
-type
-language
-title
-sourcepath
-ref_id

sectionMeta
-type
-title
-sourcepath
-id

documentMeta
-inex_id
-inex_doi
-author
-title
-tig_sbt
-doc_key
-publisher
-proc_title
-proc_day
-proc_month
-proc_year
-pages
-editor
-volume
-series
-address
-location
-isbn
-price
-issn
-copyright
-keywords
-edinfo
-edintro

Metadata

XMLstructure
-preorder
-postorder
-parent_ID

1
1..*

XMLstructureContent
-data (text)

XMLtag
-tag
-count

XMLpath
-path
-depth
-count

XMLsubstructureContent
-data (text)

XMLsubstructure
-sequence_number

1 0..*

belongs

<<derive>> index_ST01
-frequency

1

0..*

states

1

0..*contains

index_terms_ST01
-term

index_objects_ST01
-data (term frequency vector)

index_IEF_ST01
-frequency

1

0..*

states

1

0..*
contains

1

0..*

occurs in

Model: ST01

Content

Vector Space Model Representation Framework

Figure 8.18: Conceptual database schema

226 8 Overview of the X-DOSE System

DataIndexer

The DataIndexer computes the content representations of the fragments (FRA elements).
Optionally, redundant representations of specific inner nodes (e.g., sections at a certain level)
can be included to improve retrieval performance. Since the focus of this work rests on
text retrieval, the current implementation focuses on multiple representations of plain texts.
However, representations of images (e.g., histograms), tables, or other multimedia contents
can be included.

An overview of the building blocks of the DataIndexer is given in Figure 8.19. Texts
that are indexed are loaded from the database. Natural language processing is applied on
the texts to achieve mutually comparable representations. This step includes tokenization,
tagging, term extraction, stemming, and term frequency calculation. Besides single-terms
(indices ST01 – ST12), the final term frequency vectors include a composite noun vector (index
MT01), a named entity vector (index MT02), a formulaic speech vector (index MT03), and a
vector of full forms of acronyms (index MT04). Taking advantage of the modularity aspect,
different configurations of the natural language processing components are instantiated and
selected during runtime. Thus, the system can be easily adapted to process documents in
other languages.

Relational database
XML components

Relational database
content

representations
Data Loader

DataIndexer

NLP Analysis
Database

representation
Storage

Tokenizer

NLP Analysis

Tagger Term Extractor Stemmer Term frequency
Calculator

Multiple term
frequency

representations

Natural
language text

Figure 8.19: The DataIndexer

Each representation is stored in the database tables of the corresponding vector space
model representation framework (see the gray rectangles with blue content in Figure 8.18).
This framework allows to maintain multiple representations of the same content. It consists
of four database tables for each representation model (e.g., ST01). A table index_terms_ST01

holds the terms that are used to represent the content in the ST01 model. In index_ST01,
terms and term frequencies are associated with structural entries of the documents. Thus,
the table contains the term frequency representations of the document components. Derived
from the representation table, index_IEF_ST01 stores the number of term occurrences in a
given XML path. This table is essential to compute the inverse element frequency needed for
term weighing. Further, it enables dynamic term space generations as described in Section 3.5.
Table updates during indexing, re-indexing, and removal of documents are immediately

8

8.4 The Server 227

done. In addition to the term frequency representation table, a table index_objects_ST01

is provided to store binary representations of document components that do not fit the
term frequency representation type. Such representations include semantic concepts (no
meaningful ie f), figure representations (e.g., histograms), or formulas (e.g., like MathML), to
name just some of them.

In order to compare the performance of different representations, several indexing models
are tested. Table 8.2 lists the supported single-term indices. These indices are implemented
as uncontrolled vocabulary, meaning that unknown terms extracted of new documents are
added to the term space.

Table 8.2: Single-term indices maintained by the system
Index Tokenizer Tagger Extractor Stemmer Stopword Filtering
ST01 SimpleTokenizer - all - -
ST02 OpenNLPTokenizer - all - -
ST03 JavaTok - all - -
ST04 OpenNLPTokenizer QTag nouns, verbs PorterStemmer Fox (the best)
ST05 JavaTok QTag nouns, verbs PorterStemmer Fox (the best)
ST06 JavaTok QTag nouns, verbs PorterStemmer FS, CR, DS
ST07 JavaTok QTag nouns, verbs, adjectives, adverbs PorterStemmer FS, CR, DS
ST08 JavaTok QTag nouns, verbs, adjectives, adverbs - FS, CR, DS
ST09 JavaTok token types valid words PorterStemmer FS, CR, DS
ST10 JavaTok token types valid words PorterStemmer FS, CR
ST11 JavaTok token types valid words PorterStemmer FS
ST12 JavaTok token types valid words PorterStemmer -

In addition to the single-terms, multi-term indices are maintained to improve matching
of term sequences. Table 8.3 presents the set of multi-term indices used. In contrast to the
single-terms, multi-terms define a controlled vocabulary. This is necessary because the large
number of unique term combinations is inapplicable for run-time query computation. The
four indices include the multi-terms extracted in Section 5.7 and Section 5.8.

Table 8.3: Multi-term indices maintained by the system
Index Description
MT01 JavaTok-based composite nouns of arbitrary length (∼ 340.000 terms)
MT02 JavaTok-based named entities of arbitrary length (∼ 65.000 terms)
MT03 JavaTok-based formulaic speech of arbitrary length (∼ 245.000 terms)
MT04 JavaTok-based full forms of acronyms of arbitrary length (∼ 17.000 terms)

Since indexing only stores term frequency vectors in the database, weight computation is
totally executed on-the-fly during the retrieval process.

8.4.2 Retrieval

This section explains the retrieval process. In particular, it describes how the query is parsed,
analyzed, and expanded. Term weighing takes place during retrieval only. The matching

228 8 Overview of the X-DOSE System

process is guided by mechanisms improving performance in both regards, computational
complexity and quality of retrieval results. These mechanisms include, besides clustering, a
set of pre- and post-filtering steps.

Query Parser

Queries introduced to the server by the client are formulated in an extended XOR language
syntax. Queries further come in chains of subqueries. Each subquery are parsed by a JavaCC
parser implementation, which creates an Abstract Syntax Tree (AST). Listing 8.2, which is
replicated from Listing 8.1 for better readability, provides a XOR query example.

Listing 8.2: XOR query example
� �

1 /DOC[meta(.,documentMeta.title like ’\%Computer\%’)]

2 //SEC[(about(.,retrieval) AND about(./FRA,information))]

3 /FRA[about(.,processing data storage instructions logic)]
� �

In a first step the search paths and retrieval paths are resolved. The paths of subsequent
subqueries are obtained by concatenation. For instance, the retrieval path of subquery 2 is
/DOC//SEC, and the two search paths are /DOC//SEC and /DOC//SEC/FRA.

NLP Analysis

According to the index that is used for matching, query terms occurring in the about()-
predicates are extracted by the DataIndexer (see Section 8.4.1) with the same settings. This
results in a term frequency vector of query terms. Terms not occurring in the document term
space are neglected. Terms marked with +/- are separately kept for fast pre-filtering of single-
term representations during matching. Quoted terms are remembered for post-filtering of
matched results. During retrieval, the similarity of a query representation and the document
representations stored serves to compute the relevance of an XML component.

Metadata information such as titles or author names are not indexed using the vector
space model. In order to avoid missing query terms that are not included in the term space
(neglected terms), all query terms are compared unstemmed to metadata fields. For instance,
the subquery //*[about(.,to be or not to be)] matches all elements with metadata fields
that contain at least one of the terms to, be, or, or not to a certain degree.

Query Expansion

Queries often contain quite specific search terms. In case of general answers expected, related
terms can be added to query terms automatically, increasing the number of results returned.
Generally, this step covers synonyms of wanted terms and antonyms of unwanted terms. If

8

8.4 The Server 229

the query terms added are well chosen, additional results may also be relevant to the same
query with high confidence.

However, adding terms to a query automatically may lead to confusion of results retrieved
not containing any of the initial query terms (i.e., only terms expanded match the query).
Since many terms can be used synonymously, the set of query terms expanded increases
rapidly. Further, longer and thus more specific queries are expanded by a larger set of terms
than shorter queries. This may be unsatisfying, if the user tried to restrict the search to specific
contents excluding somehow similar elements using a specific vocabulary.

Especially domain-specific acronyms pose the possibility of meaningful query term exten-
sion. The system proposed uses the acronyms and their full forms (extracted in Section 5.8)
to add context-specific acronyms and/or their full forms.

Term Weighing

Weighing of both, query terms and document terms, takes place during retrieval only. The
system supports two kinds of term spaces, a static term space and dynamic term spaces (see
Section 3.5). Both methods apply the same weighing formula (see Equations 3.3 and 3.7). The
weight wi,j of a term i in a component j is given by the term frequency t fi,j multiplied by the
inverse element frequency ie fi,c of the current search path c (i.e., term space).

During weighing, the granularity aspect is considered in a first place. This means that,
according to the searched XML components, the term space and the corresponding inverse
element frequency vector are determined first. In order to minimize the number of (dynamic)
ie f calculations and term space generations, queried elements are grouped according to
their expanded search paths. For instance, the search path /DOC//SEC/FRA is resolved to
/DOC/SEC/FRA, /DOC/SEC/SEC/FRA, /DOC/SEC/SEC/SEC/FRA etc. The corresponding ie fi,c values
are calculated once per path and kept in main memory. Both, query terms and document
terms are mapped onto this common term space and weighed using the vector of inverse
element frequencies. Note that using a normalized term weighing function such as the vector
space model, the length of a node’s content is already taken into account.

Result Computation

The process of computing the result set of a subquery is illustrated in Figure 8.20.

Previous result
Subquery Subquery resultComponent

preselection

Result computation

Matching Reweighing Sorting Post-filtering

Figure 8.20: Result computation

230 8 Overview of the X-DOSE System

Each of the subqueries is processed sequentially, where the result of one subquery serves
as a filter for the result of subsequent subqueries. A preselection mechanisms observes only
components that are feasible for further investigation. It is based on three steps:

1. Components must match the structural constraint (retrieval path). This is accomplished
by a single database query on the XMLstructure table specifying the pathID attribute.

2. If a previous result is available, the component comp itself or any of the component’s
ancestors anc must be included. This is equivalent to a retrieval status value above
zero (rsv > 0). The containment is computed by checking for components preorderanc ≤
preordercomp and postorderanc ≥ postordercomp. In cases where no previous result is set,
all components are investigated.

3. Finally, +/- conditions on query terms exclude components. This filtering step is applied
on single-term indices only, because these are based on uncontrolled vocabulary. By
checking a components’ term vector for the existence (+) or absence (-) of query terms,
the performance of retrieval is boosted.

This concept of preselection ensures that only suitable components are processed, which
reduces the number of comparisons computed tremendously.

Matching includes two types of information, metadata and content. While metadata
is queried by using the meta(path,condition) predicate, content is searched by using
about(path,keywords). Metadata similarity, simMeta, is computed by addressing meta-
data fields directly in an SQL-like manner. Consequently, the meta() predicate retrieves
components that strictly match the condition. If components are retrieved, simMeta is defined
as the maximum value 1, 0. Otherwise, simMeta is set to zero. This allows to compute
metadata queries efficiently, because the database retrieves the results directly without further
processing. Alternatively, the similarity of content, simContent, is evaluated by using the
about() predicate. The matching procedure is straightforward, applying the cosine similarity
formula of the vector space model (see Section 3.5) on the weighed term vectors of the query
and the component. In case of multiple indices being used, simCont is defined as the average
of all computed values.

Hierarchical clustering is applied to improve matching performance of the about() pred-
icates. Therefore, the document level (e.g., XML path /DOC) is clustered according to the
approach described in Chapter 7. Each document initially creates its own cluster. Recursively,
the two most similar clusters are merged. The process ends if a single cluster remains.
Matching starts at the top cluster. If the content of the cluster is somehow similar to the
query (i.e., similarity above zero), the two child clusters are investigated. Leaf clusters are
not further investigated but added to the list of investigated components. These remaining
components are then compared to the query in the usual manner. For the classification,
parameters are set to αstruct = 0, 0 and βparent = 0, 2, which achieved the best evaluation
results (see Sections 7.6.2 and 7.6.5). Besides comparing the contents only, the keywords of

8

8.4 The Server 231

the about() predicate are also compared to the metadata information available. The overall
metadata similarity simMeta is defined as the number of matching single-terms divided by
the smaller number of terms (either keywords or metadata terms).

Subqueries may contain constraints combined with boolean operators. For instance, the sec-
ond subquery in Listing 8.1, //SEC[about(.,retrieval) AND about(./FRA,information)],
combines sections about retrieval with sections that include fragments containing the term
information. During processing, both of these result sets are computed independently. The
AND operator then computes the intersection of both sets, where elements occurring in both
sets are assigned the minimum similarities. The OR operator, instead, defines the union of both
sets, where elements occurring in both sets are assigned the maximum similarities. The same
procedure is applied to OR-connected retrieval paths (e.g., //(SEC|FRA)[about(.,information
retrieval)].

Having computed the similarity values simnew of the components, reweighing combines
these similarities with the similarities of the previous result simprev. This is done by using the
generality factor, the g f parameter, specified in the query. The overall similarities are given
by sim = g f · simprev + (1, 0− g f) · simnew. Reweighing is applied on the metadata similarity
simMeta, the content similarity simCont, and the retrieval status value rsv.

The computed result consists of tuples of the form (ID, preorder, postorder, simMeta,
simCont, rsv). Document ID, preorder, and postorder come directly from the database.
simMeta and simCont are the calculated meta similarity and content similarity. The rsv
value combines simMeta, simCont, and the parent-child relationship according to the query
parameters ci (content importance) and g f (generality factor). The list of preliminary results
is sorted according to the rsv in descending order. Thus, components ranked at the top of the
list are most relevant to the query.

Post-filtering of results is done in three steps: First, if the result type is specified as focused,
only the component with the highest rsv along the path to the root node of it’s document
is added to the result as best entry point. Retrieval results of the type unfocused are not
filtered. Second, result elements not meeting the minimum similarity criteria minSim are
further discarded. Third, if the number of results still exceeds the number of maximum
results maxRes, the list is truncated. The final list of results is transmitted to the client for
result presentation.

8.4.3 Classification

The system supports classification of arbitrary document components according to user-
defined classes. While the client enables users to define those classes and assign components
to them, the server is able to retrieve components that are similar to the components of a
class. The result of such a ‘classification task’ is displayed similarly to the retrieval results

232 8 Overview of the X-DOSE System

responding to a user query. This kind of retrieval needs no additional parameters being set
by the user.

As mentioned, the key issue of classifying documents is the similarity function that
compares two structured document trees. Therefore, the system relies on the TED_CM
approach of combining tree edit distance TED_SO (structure only) with content matrix
matching CM_any (ignores labels), described in Chapter 6. According to the preliminary
evaluation, the parameter combining both approaches, α, is set to 0, 5. TED_SO specific
parameters are set to α = 0, 5, β = 2, 0, Cdel = 1, 0, and Cins = 1, 0.

During classification, each component in the database is compared to the set of components
assigned to that class. The distances to all components of the class are summed up and
averaged over the size of the class. In order to get comparable ‘relevance’ values, the result
list of component distances is normalized on a [0,1] scale and subtracted from 1,0 (similarity
instead of distance). Elements not relevant are discarded. The final list is sorted according to
the relevance in descending order and sent to the client.

8.4.4 Direct Data Requests

In a client-server architecture, the client often needs to access and/or alter the database
directly. These direct data requests help reducing data loads and access times. Further, some
of the application logic can be transferred to the client instead of being computed on the
server.

The data abstraction layer of the system developed comprises methods for accessing whole
documents (structure, metadata, and content), the set of available element paths, document
processing information, links to the original source of a document, and general statistics on
documents and the document collection.

8.5 Future Extensions

Changing environments, new application domains, and tuning are inherent in software
development and software engineering. Consequently, system adaptations are inevitable
over time. Besides these changes, a number of future extensions would improve the value of
X-DOSE considerably:

� Metadata: The treatment of metadata has to be refined. At the moment multiple
occurrences of the same metadata, e.g. two authors of a paper, are ignored. Also
mechanisms for structured metadata are to be developed.

� Representation: The XSLT transformation applied on the INEX corpus is based on a
stylesheet consisting of over 2180 lines of code. Thus, the transformation surely faced

8

8.6 Summary 233

mapping difficulties with some documents. Those errors were corrected manually. More
consistent mapping mechanisms may improve the retrieval results.

� Index enhancements: The natural language core processing depends on different
internal (JavaTok tokenizer) and external tools (tagger, stemmer). For the experiments,
only a small set of possible configurations was tested. Advanced corpus-based analysis
techniques may be used to generate resources that further improve language analysis
and representation.

� Content types: A valuable extension of X-DOSE may be additional indices on other
content types than plain text. Database index structures are already provided by X-
DOSE to store that data (e.g., binary data). However, models for representing and
matching formulae, figures, pictures, and multimedia data still have to be integrated.

� Retrieval: Performance improvements, especially of the database, are necessary to
reduce query response time.

� Classification and clustering: The approaches proposed illustrate the benefits of group-
ing similar components automatically. However, other approaches with lower computa-
tional complexity should be tested for information retrieval.

� Distributed information retrieval: In order to cope with large amounts of data, a
distributed version of the system seems to be necessary. The systems’ architecture
is designed to operate independently. However, a central core engine managing the
distribution and merging of multiple result sets needs to be designed and implemented.

� Incorporation of external resources: Integrating external resources or services like
multilingual thesauri or wordnet ontologies may improve the quality of representations.
Including the output of other search engines as intermediate results (e.g., Google) may
further extend the search space, decrease complexity, and improve the overall retrieval
performance.

8.6 Summary

This chapter presented X-DOSE, the XML-Document Retrieval Engine developed. X-DOSE
is based on a client-server architecture and relies on a relational MySQL database storage.
The systems’ main tasks, indexing, retrieval, and classification are described and details
about the interaction of the client and the server are highlighted. An easy-to-use graphical
interface of the client enables the user to access the server’s functionality. Index, retrieval,
and classification requests are sent to the server and processed in parallel. A multi-level

234 8 Overview of the X-DOSE System

preselection mechanism and hierarchical clustering are applied to improve computational
performance during query processing.

9

Chapter 9 The outcome of any serious research can only be to make two
questions grow where only one grew before.

Thorstein Veblen

Evaluation of X-DOSE

This chapter is concerned with the evaluation of the system described in the previous chapter.
Based on an official data set provided by INEX, several experiments were conducted that
show the effects and benefits of different search engine settings. Final results are compared to
a former X-DOSE version as well as to similar systems of other INEX 2005 participants.

9.1 Experimental Settings

This section presents the preliminaries and experimental settings used for rating the perfor-
mance of the system implemented. The evaluation is based on the official data set provided
by INEX in 20051 (see Section 2.9). This data set includes a large document repository, a set of
queries or topics, and the corresponding query results handpicked by human experts. A set
of retrieval tasks and evaluation metrics used at INEX 2005 enable a comparison of different
systems operating on the same data.

9.1.1 Document Repository

The latest version of the INEX document collection v1.9 (used in the Ad Hoc Retrieval track
and the Natural Language track) consists of 16.819 articles of the IEEE Computer Society’s
publications from the field of computer science. The 764 MB collection is organized in 24
folders, each of them representing a particular journal (magazine or transaction). Within these
folders, the documents are further subclassified according to the year they were published,
starting from 1995 to 2004. All documents are structured according to a DTD of about 700
lines of code, defining 178 different tags. In total, the XML documents contain over 11 million
document components. On average, each document contains 687,46 elements an reaches a
nested depth of 8,09.

1http://inex.is.informatik.uni-duisburg.de/2005, (10.10.2008)

235

http://inex.is.informatik.uni-duisburg.de/2005

236 9 Evaluation of X-DOSE

In order to feed the collection to the system, the documents are transformed into the generic
XML format described in Section 3.3. The XSLT 2.0 stylesheet used for that transformation
consists of about 2.200 lines of code, reflecting the structural richness of the documents. The
generic schema defines only 33 different tags, which is less than 18,54% of the original DTD.
The average depth of the transformed documents is about 9,07, where each document contains
737,53 elements on the average. Since the basic XML elements of the generic format (DOC, SEC,
FRA) contains a synthetic level (METADATA, CONTENT) that is not indexed, the average nesting is
reduced to one half (∼ 4, 54) and the average number of elements per document decreases to
one third (∼ 245, 78). Table 9.1 summarizes the statistics about the documents.

Table 9.1: Document repository statistics
INEX 2005 Mapped INEX

Number of documents 16.819
Storage requirement 764 MB 689 MB

Number of different tags 178 33
Number of components ∼ 11.500.000 ∼ 4.100.000

Average components per document 687,46 245,78
Average nesting of a document 8,09 4,54

Using Java, SAX [12], and Saxon [13], the transformation process for the whole collection
took about 45 minutes. Special characters were retained and escaped by standardized escape
sequences defined by W3C in the ISO8879 character map2, resulting in UTF-8 conformant
XML documents. Only 71 out of the 16.819 documents (0,42%) needed manual correction of
the structure. In most cases the corrections handled flattening of unnecessary nested structures
such as lists within lists, tables within paragraphs, and paragraphs within paragraphs. Only
four corrections had to be carried out on the metadata, removing paragraphs from title and
keywords fields. All of these corrections had to be conducted carefully because disturbing
a documents’ (sub)structure consequently leads to a drop of retrieval performance. For
instance, removing a table from a paragraph (e.g., /article/par/tab becomes /article/tab)
changes the XPath (the position) of subsequent paragraphs (e.g., /art[1]/par[3] becomes
/art[1]/par[2]).

Due to the mapping of INEX documents onto the generic document schema, some of the
INEX queries cannot be evaluated exhaustively by the system. This is because the generic
format gets rid of layout-related information (e.g., , <emph>, etc.) and synthetic elements
(e.g., <bdy>, <bm>, etc.). Other queries cannot be answered exactly: INEX topics addressing
/article/bdy or /article elements are regarded as equal topics addressing the transformed
/DOC element.

2http://www.w3.org/2003/entities/iso8879doc/overview.html (13.01.2009)

9

9.1 Experimental Settings 237

9.1.2 Topics

INEX topics are of two types: Content-Only (CO) and Content-And-Structure (CAS) [170].
The type of a topic reflects the knowledge about the document structure in the collection.
CO topics refer to queries of users that do not have insight into structure, or simply do not
make use of it. Most users are of this type. The second type, CAS topics, include structural
knowledge of the documents searched. This information is used as a device for enhancing the
precision of the results retrieved. Based on the types, several subtypes focusing on extension
and interpretation aspects are defined in INEX 2005:

� CO subtypes: Investigating the usefulness of structural hints in queries, CO topics are
extended to Content Only + Structure (COS) topics. While pure CO topics consist of
content conditions only, COS topics formulate the same query with structural constraints.
This enables an evaluation of the same topic with and without structural information
across different retrieval systems.

� CAS subtypes: CAS topics contain conditions on the content and the structure. Struc-
tural constraints include elements that are searched (search path, support elements) and
elements that are retrieved (retrieval path, target elements). Both of those elements can
be considered as either strict (S) condition (path must be matched exactly) or vague
(V) condition (path is simply a hint). According to these interpretations, VVCAS, SV-
CAS, VSCAS, and SSCAS topics are distinguished. The first letter defines the elements
retrieved, and the second letter the elements searched.

All of the topics were created by the INEX 2005 participants, where each party was asked
to submit up to 6 candidate topics (3 CO/COS and 3 CAS). The final set of 87 topics consisted
of 40 CO (28 COS), and 47 CAS topics. The complete list of INEX 2005 topics can be found in
the Appendix in Section A.6.

Result assessments of the topics were also carried out by the participants. Each party
was assigned two to three topics to evaluate, where topics were assigned multiple times to
cross-check the assessments. Supported by the XML Retrieval Assessment Interface (X-RAI),
relevant topics results were highlighted manually. After the assessment phase, the participant
was allowed to access the complete set of topic assessments and granted access to the results
submitted by other INEX participants.

As the system operates on transformed INEX documents, the topics were adapted to fit the
generic document model. This step included element path renaming (e.g., article elements
became DOC elements) and metadata inclusion (e.g., //fm/au[about(.,Einstein)] became
/DOC[meta(AUTHOR,Einstein)], .//yr<=2000 became /DOC[meta(YEAR,<=2000)]). COS topic
212 was the only topic that included a structural count constraint (.//en > 3). This condition

238 9 Evaluation of X-DOSE

on the structure had to be removed because this type of constraint is not yet implemented in
X-DOSE.

9.1.3 Retrieval Tasks

In INEX 2005, the Ad Hoc retrieval track was concerned with the evaluation of the topic
results achieved by different retrieval systems. A set of assumptions regarding the output of
those systems led to the definition of special retrieval tasks. According to the query types,
several retrieval strategies were distinguished in INEX:

� CO.Thorough: This task is considered as the ‘basic’ retrieval task that returns all
relevant components within the collection. Overlap within the results is not a concern
of this tasks, which may lead to a large number of overlapping elements. Main focus is
put on the ranking mechanisms of the results.

� CO.Focused: This strategy is supposed to return the most exhaustive and most specific
element along a single XPath within a document. No overlapping elements are allowed
in the result, targeting the appropriate level of granularity. If parent and child elements
are equally relevant, the parent element is to be returned.

� CO.FetchBrowse: The fetch and browse task combines document retrieval and element
retrieval strategies. It consists of two phases: A first fetching phase ranks the documents
according to their relevance. In a second browsing phase, elements within a document
are compared to other elements within the same document. According to this intra-
document relevances, elements are ranked and returned by the system.

� COS.Thorough: Same task as the CO.Thorough strategy, but considering constraints
on the structure.

� COS.Focused: Same task as the CO.Focused strategy, but considering constraints on
the structure.

� COS.FetchBrowse: Same task as the CO.FetchBrowse strategy, but considering con-
straints on the structure.

� VVCAS: Following the thorough strategy, vague matching of elements retrieved and
vague matching of elements searched is applied.

� SVCAS: Following the thorough strategy, strict matching of elements retrieved and
vague matching of elements searched is applied.

� VSCAS: Following the thorough strategy, vague matching of elements retrieved and
strict matching of elements searched is applied.

� SSCAS: Following the thorough strategy, strict matching of elements retrieved and
strict matching of elements searched is applied.

Out of these tasks, X-DOSE is evaluated on the basis of CO.Thorough, CO.Focused,
COS.Thorough, and COS.Focused. FetchBrowse tasks were not considered because X-DOSE

9

9.1 Experimental Settings 239

has not implemented that strategy. Since X-DOSE processes structural conditions as strict
filters to improve computational retrieval performance, SSCAS is the appropriate strategy
that is evaluated. Vague matching of support and target elements was left open for further
experiments.

9.1.4 Evaluation Metrics

In INEX 2005, two kinds of official metrics were introduced to evaluate the performance of
XML retrieval systems. A recall-oriented measure at fixed ranks based on cumulated gain, and
a precision-oriented effort-precision/gained-recall measure. Both measures are computed by
EvalJ 3, an open source evaluation software implemented for INEX. Since performance values
of other INEX 2005 systems are available for comparison, X-DOSE is evaluated according to
these measures for comparison.

eXtended Cumulated Gain (xCG) Measures

Cumulated gain [143] measures reflect the number of results expected among the number
of results retrieved at a fixed cutoff point. An extension of those metrics at INEX led to a
new set of eXtended Cumulated Gain (xCG) measures [149], making structured document
retrieval performance judgements more accurate. The xCG measure is defined as a vector
of accumulated gain. The cumulated gain at a given rank i is computed as the sum of all
relevance scores xG[j] up to that rank (Equation 9.1).

xCG[i] =
i

∑
j=1

xG[j] (9.1)

For each topic, the ideal gain vector xI is derived from the recall-base acquired in the topic
assessment phase. The corresponding accumulated ideal gain vector of the optimal results is
referred to as xCI. The final normalized extended cumulated gain nxCG score is given by
Equation 9.2. For any rank, nxCG = 1, 0 represents an ideal result.

nxCG[i] =
xCG[i]
xCI[i]

(9.2)

The relevance of a component is computed based on its exhaustivity (e ∈ {0, 1, 2})4 and
specificity (s ∈ [0, 1]) values assigned during the assessment. According to these (e, s) pairs,
three quantization functions are defined:

3http://evalj.sourceforge.net (12.10.2008)
4Officially, INEX defined exhaustivity values as e ∈ {?, 0, 1, 2}, where e =? denotes elements judged as ‘too

small’. Applying the nxCG measure, these elements were processed as e = 0. [149, pp. 17]

http://evalj.sourceforge.net

240 9 Evaluation of X-DOSE

quantstrict(e, s) =

1 if e = 2 and s = 1

0 otherwise
(9.3)

quantgen(e, s) = e · s (9.4)

quantgenLi f ted(e, s) = (e + 1) · s (9.5)

The last function, quantgenLi f ted, enables ‘too small’ elements to be considered as near-misses.

These quantization functions are applied to compute the xG[j] values used in Equation 9.2.
According to the different retrieval tasks, a set of relevance value functions, referred to as rv,
were defined. For the thorough retrieval tasks, the cumulated gain is given by

xG[j] = rv(ci) = quant((e, s)i) (9.6)

where ci is the component at rank j, quant is one of the three quantization functions mentioned,
and (e, s)i is the assessed exhaustivity-specificity pair of ci. For the focused retrieval tasks, two
aspects of structured document retrieval results are considered: Near-misses (e.g., neighboring
paragraphs, container sections) and overlap (e.g., a paragraph and its container section are
both retrieved). Near-misses are introduced as rewards of non-ideal components retrieved
that are structurally related to ideal components. The set of structurally related components
consists of relevant components (as per quantization function) that are not included in the
ideal result set. Overlap is explicitly included in the relevance value function:

xG[j] = rv(ci) =

quant((e, s)i) if ci has not yet been seen

(1− α) · quant((e, s)i) if ci has been fully seen

α · ∑m
j=1(rv(cj)·|cj|)

|ci | + (1− α) · quant((e, s)i) if ci has been partially seen

(9.7)

m is the number of child components of ci, | · | is the length of an element in characters or
words, and α ∈ [0, 1] is a user’s intolerance factor of redundant components in the result. The
higher the value α, the less interested the user is in any overlapping result.

A normalization function rvnorm safeguards against higher relevance values of components
(by summing the relevances of its child nodes) than that of the ideal node.

xG[j] = rvnorm(ci) = min(rv(ci), rv(cideal)−
S

∑ rv(cj)) (9.8)

In the formula, cideal is the ideal node that lies on the same relevant path as ci, and S is the
set of child nodes cj of the ideal node that has already been seen. Figure 9.1 illustrates the
behavior of the normalization function. In the example, yellow nodes ci and cj are retrieved.
Their relevance values are computed by the retrieval system and given by rv. The ideal node

9

9.2 Results 241

to be retrieved is cideal , which is not included in the result set. For cideal , the human judgement
of its retrieval value is rv = 0, 9. In the given scenario, the normalization function limits the
retrieval value of node ci to rvnorm = min(0, 7, 0, 9− (0, 2 + 0, 2 + 0, 2)) = 0, 3, although the
retrieval value computed for ci is rv = 0, 7.

cideal
rv = 0,9

c1
rv = 0,2

c2
rv = 0,2

c3
rv = 0,2

ci
rv = 0,7

rvnorm = 0,9 – 0,6 = 0,3

cj

Figure 9.1: Normalization function rvnorm of nxCG

Effort-Precision and Gain-Recall (ep− gr) Measures

The ep-gr measure [149] reflects the effort of users required to reach a given level of cumulated
gain. Therefore, the given result ranking is compared to the ideal ranking. Formally, effort-
precision ep is given by

ep[r] =
iideal

irun
(9.9)

where iideal is the rank position at which the cumulated gain of r is reached by the ideal gain
vector xCI, and irun is the rank position at which the same cumulated gain is reached by the
system xCG. A value of 1, 0 refers to an optimal performance.

Gain-recall, gr, is computed as the cumulated gain value divided by the total cumulated
gain achievable:

gr[i] =
xCG[i]
xCI[n]

=
∑i

j=1 xG[j]

∑n
j=1 xI[j]

(9.10)

where n is the total number of documents in the recall base and xI[j] is the ideal gain
vector. In ep-gr graphs, effort-precision is plotted against gain-recall (similar to traditional
recall/precision graphs), providing a global summary of a system’s overall performance.

9.2 Results

This section describes the experiments conducted and results achieved. Nine different sets
of experiments were performed to evaluate several indexing strategies, X-DOSE parameter
settings, time measurements, performance improvements due to clustering, and an overall

242 9 Evaluation of X-DOSE

comparison to similar systems. The main focus of the experimental evaluation was put on the
following INEX retrieval tasks: CO.Thorough, CO.Focused, COS.Thorough, COS.Focused,
and SSCAS. For each retrieval task, the complete set of CO topics (40), COS topics (28), and
CAS topics (47) was processed.

For better readability, experiments and discussions focus on the strict nxGC measure. The
complete set of nxCG evaluation measures is included in the Appendix in Section A.7. Times
for indexing and retrieval are relative times according to the maximum time needed for the
current set of tasks investigated. Since the experiments were run on multiple virtual machines
and in parallel, measurements are meant for relative comparison only. Relying on absolute
times would be misleading and inappropriate.

9.2.1 Experiment I - Single-Term Index Performance

The goal of the initial experiment was to identify the single-term index that performs best. All
twelve single-term indices (ST01 – ST12, see Table 8.2) were evaluated and compared to each
other. This allowed to (1) measure the effect of each text analysis step independently, and to
(2) find an optimal overall configuration of analysis steps. For the tests, the complete set of
CO topics was used. Query parameters were fixed at maxRes = 1500 (official threshold used
at INEX), minSim = 0, 0, ci = 0, 2, g f = 0, 2, and rt = un f ocused (CO.Thorough). Further,
a static term space was presupposed in the experiment. For better readability, Table 8.2
explaining the single-term index configurations is replicated in Table 9.2.

Table 9.2: Single-term indices maintained by the system
Index Tokenizer Tagger Extractor Stemmer Stopword Filtering
ST01 SimpleTokenizer - all - -
ST02 OpenNLPTokenizer - all - -
ST03 JavaTok - all - -
ST04 OpenNLPTokenizer QTag nouns, verbs PorterStemmer Fox (the best)
ST05 JavaTok QTag nouns, verbs PorterStemmer Fox (the best)
ST06 JavaTok QTag nouns, verbs PorterStemmer FS, CR, DS
ST07 JavaTok QTag nouns, verbs, adjectives, adverbs PorterStemmer FS, CR, DS
ST08 JavaTok QTag nouns, verbs, adjectives, adverbs - FS, CR, DS
ST09 JavaTok token types valid words PorterStemmer FS, CR, DS
ST10 JavaTok token types valid words PorterStemmer FS, CR
ST11 JavaTok token types valid words PorterStemmer FS
ST12 JavaTok token types valid words PorterStemmer -

The nxCG results of each of the indices at ranks 10, 25, and 50 (official ranks used at
INEX), are presented in Table 9.3. Note that in the nxCG figures, these official ranks lay at
very small x-axis values (0,007, 0,017, and 0,033). In the sequel, each of the text analysis steps
is investigated in more detail.

9

9.2 Results 243

Table 9.3: nxCG of the CO.Thorough task (single-terms)
gen nxCG strict nxCG genLifted nxCG

Index Size [10] [25] [50] [10] [25] [50] [10] [25] [50]
ST01 1.272.103 0,1524 0,1649 0,1660 0,0115 0,0442 0,0514 0,1745 0,1841 0,1809
ST02 741.688 0,1544 0,1760 0,1850 0,0231 0,0387 0,0760 0,1795 0,1998 0,2034
ST03 711.832 0,1403 0,1660 0,1744 0,0115 0,0277 0,0474 0,1666 0,1889 0,1924
ST04 479.644 0,1559 0,1575 0,1504 0,0197 0,0399 0,0502 0,1831 0,1783 0,1672
ST05 460.992 0,1415 0,1490 0,1426 0,0158 0,0328 0,0417 0,1647 0,1693 0,1591
ST06 461.205 0,1506 0,1519 0,1406 0,0197 0,0328 0,0487 0,1763 0,1719 0,1569
ST07 516.742 0,1567 0,1570 0,1524 0,0197 0,0381 0,0454 0,1806 0,1760 0,1686
ST08 555.777 0,1478 0,1575 0,1537 0,0115 0,0308 0,0373 0,1767 0,1815 0,1719
ST09 302.204 0,1435 0,1334 0,1378 0,0235 0,0274 0,0447 0,1606 0,1509 0,1530
ST10 302.248 0,1462 0,1396 0,1378 0,0235 0,0304 0,0482 0,1673 0,1591 0,1541
ST11 302.559 0,1459 0,1418 0,1385 0,0235 0,0320 0,0431 0,1680 0,1608 0,1542
ST12 302.755 0,1430 0,1422 0,1401 0,0197 0,0313 0,0416 0,1649 0,1615 0,1540

Tokenizer Performance

The performance of tokenization was investigated by comparing the results achieved by
the indices ST01, ST02, ST03, ST04, and ST05. Figure 9.2 shows the nxCG curves and the
corresponding processing times. The x-axis in Figure 9.2a denotes the percentage of result
components achieving the current cumulated gain. For the INEX tasks, only the 1.500 top-
ranked results are considered. The y-axis is the normalized cumulated gain at a given number
of results.

Retrieval results achieved by the indices ST01 (no tokenizer, no tagger), ST02 (OpenNLP-
Tokenizer, no tagger), and ST03 (JavaTok, no tagger) differed only to a small degree. There
was no obvious trend that one of the three tokenization approaches outperformed the others.
Taking tagging into account, ST04 (OpenNLPTokenizer, QTag) returned marginally better
results than ST05 (JavaTok, QTag). For the indices (ST01, ST02, ST03, ST04, and ST05), the
number of index terms differed considerably (1.272.102, 741.688, 711.832, 479.644, and 460.992).
Compared to ST01, term space was reduced by 41,7% in ST02, 44,0% in ST03, 62,3% in ST04,
and 63,8% in ST05. This reduction led to a considerable speed up of indexing and retrieval
(Figures 9.2b and 9.2c). As for indexing time, 100% was equivalent to 75,8 hours and 100% of
retrieval time stood for 141,8 hours. In subsequent experiments, the longest taking indexing
(resp. retrieval) time is also referred to as 100% indexing (resp. retrieval) time.

Interestingly, the OpenNLPTokenizer slightly outperformed JavaTok according to the
retrieval quality in case when tagging was involved. This became evident by the ST04 and
ST05 curves. The reason for this behavior is threefold: First, JavaTok does not include the
complete set of punctuation marks used in the documents. This leads to tokens that include
unknown markers at the beginning or at the end of token strings. Such tokens are not typed as
‘proper’ words and are, consequently, not included in the index. Second, OpenNLPTokenizer
segments hyphenated words into multiple separate tokens (e.g., element-based is split into

244 9 Evaluation of X-DOSE

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST01 ST02 ST03 ST04 ST05

(a) strict nxCG Performance

0%

20%

40%

60%

80%

100%

ST01 ST02 ST03 ST04 ST05

(b) Indexing times

0%

20%

40%

60%

80%

100%

ST01 ST02 ST03 ST04 ST05

(c) Retrieval times

Figure 9.2: Tokenizer performance

element and based). This behavior increases the index size (compare ST02 and ST03), but
allows to retrieve additional XML components due to more general index terms. However,
precision may be lost because strings such as ‘element based’ and ‘element-based’ match
completely. Finally, QTag is not optimized for preprocessed JavaTok inputs. Multi-tokens and
token types are not supported by QTag. Both, the OpenNLPTokenizer and JavaTok operated
at the same speed during indexing and retrieval (ST02 and ST03). Incorporating tagging in
the processing (ST04 and ST05), especially during indexing, JavaTok preprocessed inputs
speeded up QTag processing considerably.

Both tokenization shortcomings, the treatment of punctuation marks and the splitting of
hyphenated words, could be integrated in JavaTok by extending the charset definition and the
rule base. Due to limited time, re-computation of several indices including this JavaTok update

9

9.2 Results 245

was not conducted. In the experiments, JavaTok (ST03 and ST05) achieved similar nxCG
performance compared to the OpenNLPTokenizer (ST02 and ST04). Additionally, JavaTok
speeded up indexing and retrieval. This processing improvement, the capability of extending
and tailoring the functionality of JavaTok, the smaller indices, and the improvements of
tagging favored JavaTok tokenization.

Tagger Performance

After tokenization, the influence of tagging on the retrieval performance was measured.
Figure 9.3 shows the effect of applying QTag to identify syntactically relevant information
that was used to represent the content.

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST03 ST07 ST09

(a) strict nxCG Performance

0%

20%

40%

60%

80%

100%

ST03 ST07 ST09

(b) Indexing times

0%

20%

40%

60%

80%

100%

ST03 ST07 ST09

(c) Retrieval times

Figure 9.3: Tagger performance

246 9 Evaluation of X-DOSE

A comparison of ST03 (no tagging, using all terms), ST07 (tagging, using nouns, verbs,
adjectives, and adverbs), and ST09 (no tagging, using token types) showed that QTag did not
improve the nxCG retrieval performance. Both indices, ST03 and ST09, clearly outperformed
ST07. The size of the term space did not influence the nxCG performance directly: ST03
(711.832), ST07 (516.742), and ST09 (302.204). Fastest indexing times (100% was equivalent to
20,1 hours) and retrieval times (100% was equivalent to 70,0 hours) were achieved for index
ST09.

Since tagging (re-)assigns syntactic tags based on word chains, any kind of token might
be tagged as a noun if it occurs in a certain context. Thus, tagging quality drops instantly
if word categories are not identified correctly. A brief investigation of the ST07 index terms
showed that over 37.000 terms did not even start with a letter or a number. Thus, a large
subset of the terms indexed seemed to be inappropriate or irrelevant for searching. Instead,
index terms extracted on the basis of JavaTok assigned token types (ST09) better fitted the
notion of ‘meaningful’ words. As a result of this experiment, the small index size, the better
index terms, and the faster processing clearly favored index ST09 without tagging.

Extractor Performance

The effect of including different (syntactic) categories of words in the index is shown in
Figure 9.4. ST06 selected nouns and verbs only, ST07 considered nouns, verbs, adjectives, and
adverbs, and ST09 extracted all ‘proper’ words identified via token types.

Taking into account only the first results returned (0− 0, 12%), performance was nearly
identical. As in previous results, performance was independent of the size of the index: ST06
(461.205 terms), ST07 (516.742 terms), and ST09 (302.204 terms). Again, ST09 achieved fastest
indexing time (100% was equivalent to 34,6 hours) and retrieval time (100% was equivalent to
48,0 hours).

As expected, index ST06 resulted in the worst performance. This is because adjectives
and adverbs containing important information were neglected. Clearly better results were
achieved by ST07, which included all terms of ST06 plus adjectives and adverbs. Both indices
were outperformed by ST09. Looking at the curves for ST06 and ST07, the number of index
terms extracted linearly increased the retrieval performance. However, only correct terms
relevant to user queries were helpful. Thus, the considerably smaller index ST09 achieved
best results.

This experiment confirmed that the selection of index terms based on JavaTok token
types is a promising procedure. nxCG performance and fast processing during indexing and
retrieval support that argument.

9

9.2 Results 247

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST06 ST07 ST09

(a) strict nxCG Performance

0%

20%

40%

60%

80%

100%

ST06 ST07 ST09

(b) Indexing times

0%

20%

40%

60%

80%

100%

ST06 ST07 ST09

(c) Retrieval times

Figure 9.4: Extractor performance

Stemmer Performance

A performance comparison of index ST07 (with stemming) and index ST08 (without stemming)
is given in Figure 9.5.

The performance of both indices were nearly the same. In the experiment, stemming
seemed to achieve slightly better retrieval results. The term space of ST07 contained 516.742
terms, while the term space of ST08 included 555.777 terms. Since stemming is a lightweight
process that runs very fast, there was nearly no difference in the indexing times (100% was
equivalent to 19,4 hours) and retrieval times (100% was equivalent to 48,0 hours).

One may conclude that stemming is an appropriate procedure. It improved information
retrieval by reducing the size of the vocabulary and by providing concept-like index terms.

248 9 Evaluation of X-DOSE

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST07 ST08

(a) strict nxCG Performance

0%

20%

40%

60%

80%

100%

ST07 ST08

(b) Indexing times

0%

20%

40%

60%

80%

100%

ST07 ST08

(c) Retrieval times

Figure 9.5: Stemmer performance

At the same time it operates very fast and nearly without additional computational costs.
During retrieval, it speeded up processing and reduced query answer times.

Stopword Filtering Performance

Finally, the effect of filtering stopwords was investigated. Figure 9.6 summarizes the results of
the experimental runs using the indices ST05 (QTag, Fox’s stopwords), ST06 (QTag, functional
FS, content-related CR, and domain-specific DS stopwords), ST09 (no tagger, FS, CR, DS),
ST10 (no tagger, FS, CR), ST11 (no tagger, FS), and ST12 (no tagger, no stoplist). For each
comparison (ST05 and ST06, ST09 to ST12), only the single stopword filtering step is alternated.

9

9.2 Results 249

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST05 ST06 ST09 ST10 ST11 ST12

(a) strict nxCG Performance

0%

20%

40%

60%

80%

100%

ST05 ST06 ST09 ST10 ST11 ST12

(b) Indexing times

0%

20%

40%

60%

80%

100%

ST05 ST06 ST09 ST10 ST11 ST12

(c) Retrieval times

Figure 9.6: Stopword filtering performance

First, one notes that both stopword lists, the stopwords proposed by Fox (ST05) and the
stopwords generated in this work (ST06) performed nearly the same. Also, the index sizes
of ST05 (460.992 terms) and ST06 (461.205 terms) could be considered as equal. Both, ST05
and ST06, included tagging. As a consequence, indexing times (100% was equivalent to 34,6
hours) and retrieval times (100% was equivalent to 70,5 hours) were considerably higher than
that of the other indices.

Iterative exclusion of different stopword layers led to the indices ST09, ST10, ST11, and
ST12. As expected, the size of the index increased linearly with the exclusion of layers
(302.204, 302.248, 302.559, and 302.755). These minimal changes had only a slight impact on
index computation and retrieval. However, the large number of comparisons during retrieval
favored an approach based on the ST09 index.

250 9 Evaluation of X-DOSE

Summarizing the stopword filtering procedure, appropriate selection of index terms in
advance showed that the effect of stopword filtering was reduced. Content-related and
domain-specific stopwords did not influence the retrieval performance to a high degree.

According to these experiments, ST09 turned out to achieve best retrieval results while
reducing the computational complexity and processing times. Hence, subsequent experiments
were conducted using ST09 as the best performing single-term index.

9.2.2 Experiment II - Multi-Term Index Performance

Continuing the previous experiment, multi-term index performance metrics of MT01, MT02,
MT03, MT04, and their combination MT were evaluated. MT refers to the performance
achieved by combining all four multi-term indices using equal weights (1

4 = 0, 25). None
of the initial query parameters was changed. For better readability, Table 8.3 explaining the
multi-term indices is repeated in Table 9.4. Table 9.5 summarizes the results of this experiment.

Table 9.4: Multi-term indices maintained by the system
Index Description
MT01 JavaTok-based composite nouns of arbitrary length (∼ 340.000 terms)
MT02 JavaTok-based named entities of arbitrary length (∼ 65.000 terms)
MT03 JavaTok-based formulaic speech of arbitrary length (∼ 245.000 terms)
MT04 JavaTok-based full forms of acronyms of arbitrary length (∼ 17.000 terms)

Table 9.5: nxCG of the CO.Thorough task (multi-terms)
gen nxCG strict nxCG genLifted nxCG

Index Size [10] [25] [50] [10] [25] [50] [10] [25] [50]
MT01 318.116 0,0653 0,0492 0,0606 0,0077 0,0031 0,0015 0,0765 0,0615 0,0702
MT02 50.950 0,0816 0,0744 0,0803 0,0173 0,0158 0,0213 0,1031 0,0923 0,0961
MT03 213.183 0,0541 0,0435 0,0388 0,0000 0,0000 0,0024 0,0561 0,0462 0,0397
MT04 15.603 0,0661 0,0606 0,0536 0,0055 0,0070 0,0133 0,0716 0,0659 0,0563
MT 597.852 0,0603 0,0644 0,0751 0,0077 0,0046 0,0165 0,0822 0,0825 0,0887

Since MT is a combination of all other multi-term indices, the (theoretical) size of the term
space was given by the sum of all other term space sizes. As expected, the performance of
multi-term indices was much lower compared to the performance achieved by single-term
indices (see Table 9.3 and the nCG scales of Figures 9.2 to 9.6). This was because multi-terms
are less frequent and do not allow partial matching of query terms. Figure 9.7 presents the
nxCG performance achieved.

Indexing and retrieval times correlated with the sizes of the indices. For MT, the theoretical
indexing time (100% was equivalent to 822,6 hours) and retrieval time (100% was equivalent
to 22,9 hours) are given by the cumulated times of all multi-term indices.

9

9.2 Results 251

0

0,02

0,04

0,06

0,08

0,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

MT01 MT02 MT03 MT04 MT

(a) strict nxCG Performance

0%

20%

40%

60%

80%

100%

MT01 MT02 MT03 MT04 MT

(b) Indexing times

0%

20%

40%

60%

80%

100%

MT01 MT02 MT03 MT04 MT

(c) Retrieval times

Figure 9.7: Multi-term index performance

The evaluation showed that some categories of multi-terms were more useful to informa-
tion retrieval than others. For instance, named entities (MT02) and full forms of acronyms
(MT04) turned out to be better index terms than composite nouns (MT01) and formulaic
speech (MT03). Interestingly, the term spaces of MT02 and MT04 were much smaller than the
term spaces of MT01 and MT03. Most astonishing was the fact that MT02 performed equal
or even slightly better than the combination of all multi-terms together. This means that in
the INEX topics named entities are the most important type of multi-terms. Looking at the
gen and genLifted graphs in the Appendix (see Section A.7.2), only the complete set of the
multi-term indices summed up to MT.

The benefit of each index depends on the user queries. In the INEX topics, named entities
and acronyms were frequently used, while composite nouns and formulaic speech were not.

252 9 Evaluation of X-DOSE

One reason for that is that the topics were constructed by domain experts that searched for
specific pieces of information. One explanation would be that named entities and acronyms
are more likely to be used to express such special information needs. However, this may
not be true for common users querying more general topics. Thus, this work relies on a
combination of all multi-term indices.

9.2.3 Experiment III - Combined Single-Term and Multi-Term Index Performance

In a third experiment, a combination of the best performing single-term index ST09 and
the multi-term index MT (consisting of MT01, MT02, MT03, and MT04) was studied. This
approach was called TOP. Again, none of the initial query parameters was changed. As before,
the overall relevance of a document component was averaged over the relevances computed
for each index separately using equal weights (1

5 = 0, 2). Table 9.6 summarizes the results.

Table 9.6: nxCG of the CO.Thorough task (single-terms and multi-terms)
gen nxCG strict nxCG genLifted nxCG

Index [10] [25] [50] [10] [25] [50] [10] [25] [50]
ST09 0,1435 0,1334 0,1378 0,0235 0,0274 0,0447 0,1606 0,1509 0,1530
MT 0,0603 0,0644 0,0751 0,0077 0,0046 0,0165 0,0822 0,0825 0,0887
TOP 0,1524 0,1415 0,1503 0,0231 0,0240 0,0424 0,1804 0,1660 0,1718

The results in the table show that a combination of single-terms and multi-terms achieved
better results than each of the indices separately. Only among the first 8% of the results
retrieved, the strict nxCG performance of the ST09 index is minimally higher than the
performance of the TOP index. This was not upheld for the gen and genLifted nxCG curves,
where in both cases TOP achieved best results. In Figure 9.8, the performance curves of the
three indices are depicted.

As in the previous experiment, indexing time (100% was equivalent to 843,3 hours) for
the index TOP was cumulated from the indexing times of ST09 and MT. Since each index
is compared sequentially, retrieval time (100% was equivalent to 54,6 hours) using the TOP
index took, as expected, nearly as long as the retrieval of ST09 and MT together. The figure
also shows that the contribution of the single-term index was much higher than that of the
multi-term index. However, using additional multi-terms in combination with single-terms
increased retrieval performance. Subsequent experiments were, therefore, conducted using
the TOP index.

9.2.4 Experiment IV - Content and Structure

This experiment focused on the impact of structural constraints on the quality of the retrieval
results. Query parameters remain unchanged at maxRes = 1500, minSim = 0, 0, ci = 0, 2, and

9

9.2 Results 253

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST09 MT TOP

(a) strict nxCG Performance

0%

20%

40%

60%

80%

100%

ST09 MT TOP

(b) Indexing times

0%

20%

40%

60%

80%

100%

ST09 MT TOP

(c) Retrieval times

Figure 9.8: Combined single-term and multi-term index performance

g f = 0, 2. The INEX tasks CO.Thorough, CO.Focused, COS.Thorough, COS.Focused, and
SSCAS were evaluated and compared to each other. In all cases, the TOP index was used for
retrieval. The results are given in Table 9.7.

Table 9.7: nxCG of CO, COS, and SSCAS
gen nxCG strict nxCG genLifted nxCG

Index [10] [25] [50] [10] [25] [50] [10] [25] [50]
CO.Thorough 0,1524 0,1415 0,1503 0,0231 0,0240 0,0424 0,1804 0,1660 0,1718
CO.Focused 0,1350 0,1285 0,1225 0,0192 0,0231 0,0234 0,1449 0,1380 0,1368
COS.Thorough 0,0977 0,0846 0,0852 0,0118 0,0118 0,0235 0,1046 0,0897 0,0878
COS.Focused 0,1037 0,0876 0,0957 0,0059 0,0071 0,0225 0,1084 0,0890 0,0957
SSCAS 0,1932 0,2857 0,3365 0,4000 0,3739 0,3389 0,2063 0,3011 0,3470

254 9 Evaluation of X-DOSE

The performance indicators of the different INEX tasks varied remarkably. CO topic
performance obtained 20% of the maximum cumulated gain possible. Worst results were
achieved for the COS topics (< 15%). Best results were computed for complex SSCAS topics,
reaching up to 40% of nxCG. For both tasks, CO and COS, the thorough strategy turned out
to perform better than the focused strategy.

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Thorough CO.Focused

(a) CO

0

0,03

0,06

0,09

0,12

0,15

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough COS.Focused

(b) COS

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS

(c) SSCAS

0%

20%

40%

60%

80%

100%

CO.Thorough CO:Focused COS.Thorough COS.Focused SSCAS

(d) Retrieval times

Figure 9.9: Strict nxCG Performance

The figures show that focused retrieval was not as successful as thorough retrieval.
Especially for the CO tasks, the difference was considerable. Taking the complete result sets
of 1500 results per topic into account, the CO task achieved 24% of the total cumulated gain
possible. The performance of the COS tasks showed a similar behavior. Thorough retrieval
outperformed focused retrieval. However, the difference was not as large as for the CO tasks.
In general, the performance of the COS task was quite low. The most complex topics, the
SSCAS retrieval task, achieved markedly better results. The complete SSCAS results reached
about 75% of the total cumulated gain possible.

As indicated by Figure 9.9d, result computation for CO topics took longest. In the figure,
the average retrieval times per topic for each of the task are given. 100% retrieval time
was equivalent to 1,3 hours. These processing times are explained by the computational

9

9.2 Results 255

complexity of the on-the-fly weight computation. In a productive system these unfeasible
retrieval times can be avoided by storing pre-computed term weights redundantly in the
database. Since X-DOSE implements structural constraints as filter criteria, results for COS
and SSCAS topics – although more complex – were computed three times faster.

9.2.5 Experiment V - Static Term Space versus Dynamic Term Spaces

The differences of applying a single static term space instead of multiple dynamic term
spaces are described in Section 3.5. This experiment showed its impact on the retrieval
performance. According to experiment IV, all INEX tasks were evaluated applying the same
query parameters. The results are summarized in Table 9.8.

Table 9.8: Static term space versus dynamic term spaces
gen nxCG strict nxCG genLifted nxCG

Index Type [10] [25] [50] [10] [25] [50] [10] [25] [50]
CO.Thorough static 0,1524 0,1415 0,1503 0,0231 0,0240 0,0424 0,1804 0,1660 0,1718
CO.Thorough dynamic 0,1524 0,1415 0,1503 0,0231 0,0240 0,0424 0,1804 0,1660 0,1718
CO.Focused static 0,1350 0,1285 0,1225 0,0192 0,0231 0,0234 0,1449 0,1380 0,1368
CO.Focused dynamic 0,1350 0,1285 0,1225 0,0192 0,0231 0,0234 0,1449 0,1380 0,1368
COS.Thorough static 0,0977 0,0846 0,0852 0,0118 0,0118 0,0235 0,1046 0,0897 0,0878
COS.Thorough dynamic 0,0977 0,0846 0,0852 0,0118 0,0118 0,0235 0,1046 0,0897 0,0878
COS.Focused static 0,1037 0,0876 0,0957 0,0059 0,0071 0,0225 0,1084 0,0890 0,0957
COS.Focused dynamic 0,1037 0,0876 0,0957 0,0059 0,0071 0,0225 0,1084 0,0890 0,0957
SSCAS static 0,1932 0,2857 0,3365 0,4000 0,3739 0,3389 0,2063 0,3011 0,3470
SSCAS dynamic 0,1932 0,2857 0,3365 0,4000 0,3739 0,3389 0,2063 0,3011 0,3470

Unexpectedly, dynamic term spaces had no impact at all on the retrieval performance.
Although term weights of the document component representations differed (because of
different ie f values), the ranking of components retrieved maintained the same.

The explanation for that behavior was the large number of leaf components and, conse-
quently, the amount of text within the leave nodes (FRA elements). Due to this fact, dynamic
term spaces of leave components performed nearly equal to the complete static term space.
Since term spaces of components higher in the hierarchy contain the term spaces of descen-
dant components, this effect was even enforced for dynamic term spaces at intermediate
levels.

The retrieval times (100% retrieval time was equivalent to 78,5 hours), as given in Fig-
ure 9.10, indicated that dynamic term space computation consumed up to 45% more time.
Learning from that experience, subsequent experiments were conducted using a single static
term space.

256 9 Evaluation of X-DOSE

0%

20%

40%

60%

80%

100%

CO.Tho
rou

gh
.st

ati
c

CO.Tho
rou

gh
.dy

na
mic

CO:Foc
us

ed
.st

ati
c

CO:Foc
us

ed
.dy

na
mic

COS.Tho
rou

gh
.st

ati
c

COS.Tho
rou

gh
.dy

na
mic

COS.Foc
us

ed
.st

ati
c

COS.Foc
us

ed
.dy

na
mic

SSCAS.st
ati

c

SSCAS.dy
na

mic

Figure 9.10: Retrieval times of static and dynamic term spaces

9.2.6 Experiment VI - The Effect of Content Importance ci

In order to find an optimal parameter setting for the importance of content relative to
metadata, several ci settings were tested. Since the ci factor combines the impact of metadata
and content relevance, this experiment was conducted on each of the CO, COS, and CAS
tasks. Previous query parameters remained unchanged (maxRes = 1500, minSim = 0, 0, and
g f = 0, 2). Experimental results are provided in Table 9.9.

The results in the table show that higher values of ci generated better results than lower ci
values. This indicates that the content of a document component was more important than its’
metadata information. The explanation for that is simple: The majority of the components
retrieved, the FRA elements, did not contain metadata that was queried explicitly (except
tables and figures).

Figure 9.11 shows the impact of the content importance factor ci on the retrieval perfor-
mance. Colors are used to distinguish the different ci values.

For all tasks, low ci values led to worse results. Best performance was achieved for ci = 0, 8
and ci = 1, 0. Therefore, the ci parameter was fixed at 0, 8 for subsequent experiments. This
value was assumed to give best results, because much weight is put on the similarity of
contents while metadata similarity is not ignored completely.

9.2.7 Experiment VII - The Effect of the Generality Factor g f

The generality factor g f controls the influence of the ancestor components’ relevances stated
in the user query on the components’ relevance itself. g f = 0, 0 means that the relevance
of a component is independent of the component ancestors’ relevances. g f = 1, 0 defines
that a components’ relevance is given by the component ancestors’ relevance only. The query

9

9.2 Results 257

Table 9.9: Impact of content importance ci
gen nxCG strict nxCG genLifted nxCG

Index ci [10] [25] [50] [10] [25] [50] [10] [25] [50]
CO.Thorough 0,0 0,0509 0,0303 0,0209 0,0000 0,0000 0,0000 0,0520 0,0302 0,0199
CO.Thorough 0,2 0,1524 0,1415 0,1503 0,0231 0,0240 0,0424 0,1804 0,1660 0,1718
CO.Thorough 0,5 0,1451 0,1401 0,1498 0,0231 0,0270 0,0440 0,1767 0,1656 0,1729
CO.Thorough 0,8 0,1522 0,1400 0,1541 0,0231 0,0270 0,0440 0,1845 0,1669 0,1777
CO.Thorough 1,0 0,1519 0,1395 0,1523 0,0231 0,0286 0,0440 0,1841 0,1665 0,1757
CO.Focused 0,0 0,0573 0,0357 0,0245 0,0000 0,0000 0,0000 0,0553 0,0329 0,0215
CO.Focused 0,2 0,1350 0,1285 0,1225 0,0192 0,0231 0,0234 0,1449 0,1380 0,1368
CO.Focused 0,5 0,1312 0,1267 0,1225 0,0192 0,0277 0,0264 0,1461 0,1402 0,1393
CO.Focused 0,8 0,1368 0,1268 0,1250 0,0192 0,0277 0,0264 0,1506 0,1399 0,1418
CO.Focused 1,0 0,1339 0,1250 0,1233 0,0231 0,0277 0,0264 0,1503 0,1373 0,1400
COS.Thorough 0,0 0,0218 0,0122 0,0150 0,0000 0,0000 0,0012 0,0238 0,0129 0,0148
COS.Thorough 0,2 0,0977 0,0846 0,0852 0,0118 0,0118 0,0235 0,1046 0,0897 0,0878
COS.Thorough 0,5 0,0986 0,0851 0,0865 0,0118 0,0118 0,0247 0,1066 0,0905 0,0894
COS.Thorough 0,8 0,1007 0,0836 0,0862 0,0118 0,0118 0,0247 0,1085 0,0890 0,0893
COS.Thorough 1,0 0,1007 0,0824 0,0864 0,0118 0,0118 0,0247 0,1085 0,0875 0,0895
COS.Focused 0,0 0,0257 0,0156 0,0190 0,0000 0,0000 0,0012 0,0261 0,0150 0,0169
COS.Focused 0,2 0,1037 0,0876 0,0957 0,0059 0,0071 0,0225 0,1084 0,0890 0,0957
COS.Focused 0,5 0,1056 0,0919 0,0989 0,0059 0,0118 0,0272 0,1117 0,0933 0,0986
COS.Focused 0,8 0,1078 0,0896 0,0990 0,0059 0,0118 0,0272 0,1136 0,0915 0,0986
COS.Focused 1,0 0,1051 0,0895 0,0992 0,0059 0,0118 0,0272 0,1101 0,0914 0,0989
SSCAS 0,0 0,0000 0,0439 0,0495 0,0000 0,0300 0,0550 0,0190 0,0639 0,0606
SSCAS 0,2 0,1932 0,2857 0,3365 0,4000 0,3739 0,3389 0,2063 0,3011 0,3470
SSCAS 0,5 0,3361 0,2857 0,3365 0,4000 0,3739 0,3388 0,3492 0,3011 0,3470
SSCAS 0,8 0,3363 0,3013 0,3371 0,4000 0,3839 0,3389 0,3543 0,3178 0,3479
SSCAS 1,0 0,2525 0,3013 0,3371 0,4000 0,3839 0,3389 0,2705 0,3178 0,3479

parameters for the experiment were fixed at maxRes = 1500, minSim = 0, 0, and ci = 0, 8.
Since CO topics do not contain ancestor components (a single, unchained subquery), these
tasks (thorough and focused) were skipped. For the COS and SSCAS tasks five different g f
values in the range between 0 and 1 were evaluated. Table 9.10 presents the results of this
experiment.

As Table 9.10 shows, the minimum g f = 0, 0 and the maximum g f = 1, 0 values were not
optimal. Best results were achieved by g f = 0, 5 for COS topics and g f = 0, 8 for CAS topics.

Figure 9.12 sketches the nxCG performance of the different g f values. In the figure, colors
decode the different g f values used. The experiment showed that the relevance of ancestor
components had no large impact on the components’ relevance. This was because many of the
topics addressed components directly without specifying ancestor components. Such topics
were unaffected by the g f parameter. Out of the 28 COS and 47 CAS topics, only 12 COS and
37 CAS specified container elements explicitly. Of course, some topics implicitly included
ancestor relationships such as //SEC addressed /DOC/SEC and /DOC/SEC/SEC components. On
the other hand, container components were mostly given by their structure without any
content restrictions (e.g., /DOC/SEC).

258 9 Evaluation of X-DOSE

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Thorough 0,0 CO.Thorough 0,2 CO.Thorough 0,5
CO.Thorough 0,8 CO.Thorough 1,0

(a) CO.Thorough

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Focused 0,0 CO.Focused 0,2 CO.Focused 0,5
CO.Focused 0,8 CO.Focused 1,0

(b) CO.Focused

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough 0,0 COS.Thorough 0,2 COS.Thorough 0,5
COS.Thorough 0,8 COS.Thorough 1,0

(c) COS.Thorough

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Focused 0,0 COS.Focused 0,2 COS.Focused 0,5
COS.Focused 0,8 COS.Focused 1,0

(d) COS.Focused

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS 0,0 SSCAS 0,2 SSCAS 0,5 SSCAS 0,8 SSCAS 1,0

(e) SSCAS

Figure 9.11: Strict nxCG Performance of ci

In the experiment, the maximum value of g f = 1, 0 led to bad performance. The perfor-
mance of other g f values were close to each other. Generally, lower values that put more
emphasis on the components relevance, achieved better performance than higher ones. The
small differences indicated that a factor smaller than 1, 0 did not influence the result too much.
According to the figures, values of g f = 0, 5 for COS topics and g f = 0, 8 for CAS topics were
chosen.

9

9.2 Results 259

Table 9.10: Impact of the generality factor g f
gen nxCG strict nxCG genLifted nxCG

Index g f [10] [25] [50] [10] [25] [50] [10] [25] [50]
COS.Thorough 0,0 0,1007 0,0836 0,0872 0,0118 0,0118 0,0247 0,1085 0,0890 0,0903
COS.Thorough 0,2 0,1007 0,0836 0,0862 0,0118 0,0118 0,0247 0,1085 0,0890 0,0893
COS.Thorough 0,5 0,1034 0,0837 0,0862 0,0118 0,0118 0,0247 0,1120 0,0893 0,0893
COS.Thorough 0,8 0,1007 0,0832 0,0856 0,0118 0,0118 0,0247 0,1069 0,0877 0,0884
COS.Thorough 1,0 0,0789 0,0551 0,0617 0,0118 0,0071 0,0176 0,0849 0,0592 0,0652
COS.Focused 0,0 0,1078 0,0896 0,0990 0,0059 0,0118 0,0272 0,1136 0,0915 0,0986
COS.Focused 0,2 0,1078 0,0896 0,0990 0,0059 0,0118 0,0272 0,1136 0,0915 0,0986
COS.Focused 0,5 0,1104 0,0898 0,0979 0,0059 0,0118 0,0272 0,1171 0,0917 0,0976
COS.Focused 0,8 0,1091 0,0895 0,0973 0,0059 0,0118 0,0272 0,1144 0,0910 0,0969
COS.Focused 1,0 0,0854 0,0594 0,0725 0,0059 0,0071 0,0129 0,0902 0,0612 0,0711
SSCAS 0,0 0,3504 0,2967 0,3419 0,4250 0,3739 0,3389 0,3634 0,3112 0,3524
SSCAS 0,2 0,3363 0,3013 0,3371 0,4000 0,3839 0,3389 0,3543 0,3178 0,3479
SSCAS 0,5 0,3504 0,2912 0,3408 0,4250 0,3739 0,3539 0,3682 0,3110 0,3540
SSCAS 0,8 0,3646 0,3115 0,3484 0,4500 0,4039 0,3689 0,3825 0,3350 0,3647
SSCAS 1,0 0,2365 0,2657 0,2756 0,0750 0,1300 0,0950 0,2737 0,2926 0,2964

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough 0,0 COS.Thorough 0,2 COS.Thorough 0,5 COS.Thorough 0,8 COS.Thorough 1,0

(a) COS.Thorough

0

0,05

0,1

0,15

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Focused 0,0 COS.Focused 0,2 COS.Focused 0,5 COS.Focused 0,8 COS.Focused 1,0

(b) COS.Focused

0

0,2

0,4

0,6

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS 0,0 SSCAS 0,2 SSCAS 0,5 SSCAS 0,8 SSCAS 1,0

(c) SSCAS

Figure 9.12: Strict nxCG Performance of g f

260 9 Evaluation of X-DOSE

9.2.8 Experiment VIII - INEX 2005 Comparison

The results achieved in this work were compared to other INEX 2005 participants using the
same documents, topics, and evaluation metrics. At INEX 2005, a former version of the
X-DOSE system participated (see [120]). In order to point out the progress of the X-DOSE
development over the last years, the former X-DOSE’05 performance is shown and compared
to the current X-DOSE’09 version.

For the comparison, the best performing X-DOSE’09 parameter settings for the CO tasks
(ci = 0, 8, g f = 0, 8 although irrelevant), the COS tasks (ci = 0, 8, g f = 0, 5), and the SSCAS
task (ci = 0, 8, g f = 0, 8) were selected. Table 9.11 summarizes the results of X-DOSE’09 and
X-DOSE’05.

Table 9.11: Progress of the X-DOSE development
gen nxCG strict nxCG genLifted nxCG

Task System [10] [25] [50] [10] [25] [50] [10] [25] [50]
CO.Thorough X-DOSE’05 0,1486 0,1229 0,1085 0,0115 0,0320 0,0407 0,1592 0,1320 0,1141
CO.Thorough X-DOSE’09 0,1522 0,1400 0,1541 0,0231 0,0270 0,0440 0,1845 0,1669 0,1777
CO.Focused X-DOSE’05 0,1247 0,0913 0,0819 0,0160 0,0112 0,0117 0,1283 0,0926 0,0785
CO.Focused X-DOSE’09 0,1368 0,1268 0,1250 0,0192 0,0277 0,0264 0,1506 0,1399 0,1418
COS.Thorough X-DOSE’05 0,1036 0,0889 0,0719 0,0000 0,0183 0,0312 0,1077 0,0907 0,0709
COS.Thorough X-DOSE’09 0,1034 0,0837 0,0862 0,0118 0,0118 0,0247 0,1120 0,0893 0,0893
COS.Focused X-DOSE’05 0,1216 0,0875 0,0827 0,0000 0,0212 0,0365 0,1206 0,0821 0,0732
COS.Focused X-DOSE’09 0,1104 0,0898 0,0979 0,0059 0,0118 0,0272 0,1171 0,0917 0,0976
SSCAS X-DOSE’05 0,1672 0,1494 0,1548 0,3500 0,3578 0,3828 0,1781 0,1641 0,1654
SSCAS X-DOSE’09 0,3646 0,3115 0,3484 0,4500 0,4039 0,3689 0,3825 0,3350 0,3647

As the table shows, X-DOSE’09 outperforms X-DOSE’05 on the CO tasks. On the COS
tasks, X-DOSE’05 seemed to perform even a bit better than the current version. For the SSCAS
task, the improvements of X-DOSE’09 boosted the retrieval performance.

Figure 9.13 plots the corresponding nxCG curves of X-DOSE’05, X-DOSE’09, and all
participating INEX’05 systems. All graphs show that for all retrieval tasks X-DOSE’09
performed clearly better than X-DOSE’05. For the first 5%-10% of the retrieval results, nxCG
performance laid within a narrow margin. The more results included, the more the cumulated
gain measure differed for both systems. Taking the complete number of retrieval results into
account, X-DOSE’09 outperformed X-DOSE’05 clearly.

In Figure 9.13, gray curves denote performance profiles of other systems competing at
INEX. Compared to other systems, X-DOSE was outperformed for the CO and COS tasks.
Instead, for the SSCAS task X-DOSE outperformed most of the other systems. Tables 9.12–9.16
show the performance measures of the top 10 ranked INEX’05 systems. The reason for the
low performance of the CO and COS retrieval tasks is threefold:

� The mapping procedure of the INEX documents onto the generic document format
changed the document structure to some degree (e.g., corrections of the structure). Some

9

9.2 Results 261

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

Other
syste

(a) CO.Thorough

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(b) CO.Focused

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(c) COS.Thorough

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(d) COS.Focused

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(e) SSCAS

Figure 9.13: Strict nxCG Performance at INEX 2005

structural components of the initial INEX schema did not occur in the new format (e.g.,
tags for layouting, synthetic elements such as /article/bdy), were generalized to more
abstract components (e.g., all different paragraph tags became a FRA elements of type
text), or were reordered during correction (e.g., p[2]/tbl[1] became tbl[1], further
p[i] elements were changed to p[i-1]).

262 9 Evaluation of X-DOSE

� INEX topics had to be adapted according to the generic document structure. This
transformation included new meta() predicates and renaming of element paths. Thus,
some of the initial topics could not be translated exactly.

� INEX assessments (optimal results) included elements that were derived automatically
to the optimal recall base. For instance, if /article/bdy/sec was a relevant result, both
containers /article/bdy and /article were also relevant to some degree and got added.
Many of these elements derived were only of synthetic nature (e.g., /article/bdy.
During evaluation, all elements retrieved had to include the correct path within the
document. In X-DOSE, this path had, after retrieval, to be reconstructed from the
metadata information (sourcepath) of the component. Obviously, this could only be
done for components that were in fact mapped. Since a large number of INEX elements
were not mapped one to one, such a reconstruction was often not possible. During
evaluation, such results were – unfortunately – judged as missing, although these
elements never existed in the mapped documents. Especially in the case of CO and
COS topics, this large number of synthetic elements not retrieved by X-DOSE led to that
drop of performance.

Table 9.12: Top-10 INEX 2005 systems (CO.Thorough)
gen nxCG strict nxCG genLifted nxCG

Rank [10] [25] [50] [10] [25] [50] [10] [25] [50]
1 0,3037 0,2771 0,1004 0,1189 0,1931 0,2546 0,3401 0,3167 0,2717
2 0,2820 0,2654 0,0923 0,1174 0,1539 0,2529 0,3345 0,3032 0,2689
3 0,2797 0,2634 0,0846 0,1079 0,1298 0,2480 0,3274 0,2855 0,2670
4 0,2673 0,2573 0,0749 0,0974 0,1222 0,2448 0,2993 0,2814 0,2639
5 0,2665 0,2570 0,0747 0,0921 0,1157 0,2377 0,2939 0,2782 0,2628
6 0,2637 0,2552 0,0746 0,0910 0,1134 0,2350 0,2908 0,2777 0,2613
7 0,2593 0,2539 0,0739 0,0855 0,1093 0,2343 0,2905 0,277 0,2593
8 0,2574 0,2441 0,0615 0,0847 0,1092 0,2339 0,2816 0,2732 0,2468
9 0,2561 0,2399 0,0598 0,0846 0,1049 0,2330 0,2806 0,2693 0,2423
10 0,2552 0,2386 0,0538 0,0842 0,1035 0,2299 0,2756 0,2667 0,2411

For better comparison, the best results achieved by X-DOSE were ranked in Table 9.17. The
number between parentheses in each cell indicates the rank of X-DOSE in relation to other
participating systems. As in the figure and tables above, the results illustrated that X-DOSE
was less competitive in the case of CO and COS tasks. In contrast to that, it was ranked among
the top-10 systems in the case of SSCAS. However, taking the performance of the SSCAS
runs as the most accurate ones into account, X-DOSE seems to be a competitive structured
document retrieval system. Further evaluation tasks based on other corpora and metrics
would surely provide better insights in the real performance of the system. Unfortunately,
there were no other corpora available that included queries and assessments for evaluation

9

9.2 Results 263

Table 9.13: Top-10 INEX 2005 systems (CO.Focused)
gen nxCG strict nxCG genLifted nxCG

Rank [10] [25] [50] [10] [25] [50] [10] [25] [50]
1 0,2688 0,2325 0,2190 0,1401 0,1543 0,1902 0,3118 0,2505 0,2380
2 0,2561 0,2178 0,2122 0,1363 0,1513 0,1730 0,2942 0,2449 0,2371
3 0,2458 0,2139 0,2084 0,1324 0,1432 0,1627 0,2763 0,2415 0,2279
4 0,2538 0,2152 0,2085 0,1324 0,1442 0,1730 0,2859 0,2437 0,2305
5 0,2349 0,2134 0,2078 0,1266 0,1294 0,1549 0,2729 0,2347 0,2274
6 0,2316 0,2130 0,2031 0,1209 0,1095 0,1317 0,2729 0,2319 0,2264
7 0,2313 0,2110 0,1998 0,1074 0,1077 0,1261 0,2664 0,2293 0,2165
8 0,2290 0,2073 0,1985 0,0960 0,0997 0,1240 0,2612 0,2234 0,2079
9 0,2275 0,2034 0,1924 0,0959 0,0887 0,1209 0,2588 0,2230 0,2077
10 0,2244 0,2025 0,1914 0,0901 0,0886 0,1176 0,2428 0,2099 0,2012

Table 9.14: Top-10 INEX 2005 systems (COS.Thorough)
gen nxCG strict nxCG genLifted nxCG

Rank [10] [25] [50] [10] [25] [50] [10] [25] [50]
1 0,3153 0,2858 0,2665 0,0824 0,1050 0,1366 0,3375 0,3045 0,2792
2 0,3111 0,2828 0,2607 0,0824 0,1050 0,1360 0,3373 0,3016 0,2775
3 0,2766 0,2754 0,2583 0,0588 0,1027 0,1354 0,3078 0,3003 0,2747
4 0,2747 0,2741 0,2542 0,0588 0,0956 0,1307 0,3044 0,2929 0,2655
5 0,2690 0,2649 0,2490 0,0529 0,0912 0,0901 0,3021 0,2916 0,2626
6 0,2666 0,2634 0,2462 0,0507 0,0771 0,0883 0,3017 0,2904 0,2601
7 0,2659 0,2621 0,2367 0,0507 0,0736 0,0755 0,2939 0,2836 0,2493
8 0,2650 0,2620 0,2361 0,0471 0,0736 0,0712 0,2893 0,2829 0,2491
9 0,2625 0,2586 0,2347 0,0471 0,0660 0,0659 0,2881 0,2810 0,2416
10 0,2607 0,2582 0,2343 0,0448 0,0576 0,0653 0,2795 0,2798 0,2364

Table 9.15: Top-10 INEX 2005 systems (COS.Focused)
gen nxCG strict nxCG genLifted nxCG

Rank [10] [25] [50] [10] [25] [50] [10] [25] [50]
1 0,2908 0,2520 0,2439 0,1588 0,1996 0,2510 0,3194 0,2579 0,2598
2 0,2860 0,2372 0,2375 0,1261 0,1788 0,1809 0,3036 0,2541 0,2441
3 0,2767 0,2370 0,2315 0,1206 0,1308 0,1576 0,3014 0,2399 0,2306
4 0,2637 0,2327 0,2179 0,1125 0,1235 0,1574 0,2906 0,2397 0,2251
5 0,2534 0,2248 0,2147 0,1063 0,1213 0,1264 0,2878 0,2307 0,2182
6 0,2462 0,2137 0,2101 0,0971 0,0975 0,1178 0,2513 0,2200 0,2141
7 0,2457 0,2068 0,1936 0,0672 0,0908 0,0856 0,2499 0,2177 0,2101
8 0,2427 0,1942 0,1931 0,0613 0,0815 0,0830 0,2495 0,2089 0,2086
9 0,2368 0,1939 0,1889 0,0496 0,0684 0,0780 0,2441 0,2046 0,1963
10 0,2286 0,1891 0,1816 0,0466 0,0637 0,0697 0,2417 0,2018 0,1804

purpose. Other performance metrics than nxCG and ep/gr would not have been comparable
to systems of INEX 2005 participants.

9.2.9 Experiment IX - Clustering Performance

Due to limited time, the evaluation of clustering performance was restricted to the best
performing single-term index ST09. In this evaluation, clustering was used to improve answer

264 9 Evaluation of X-DOSE

Table 9.16: Top-10 INEX 2005 systems (SSCAS)
gen nxCG strict nxCG genLifted nxCG

Rank [10] [25] [50] [10] [25] [50] [10] [25] [50]
1 0,4730 0,4816 0,5192 0,4500 0,4278 0,4356 0,4810 0,4936 0,5233
2 0,4699 0,4335 0,4211 0,4500 0,4278 0,4078 0,4780 0,4342 0,4299
3 0,4031 0,3978 0,4194 0,3250 0,3956 0,4067 0,4053 0,4007 0,4299
4 0,3643 0,3978 0,4194 0,3250 0,3956 0,3967 0,3719 0,3980 0,4288
5 0,3288 0,3971 0,4138 0,2250 0,3839 0,3894 0,3243 0,3958 0,4177
6 0,3246 0,3950 0,4094 0,2000 0,3839 0,3756 0,3215 0,3921 0,4157
7 0,3147 0,3927 0,4076 0,1750 0,3200 0,3639 0,3163 0,3907 0,4140
8 0,3071 0,3433 0,3959 0,1500 0,1817 0,3589 0,3157 0,3600 0,4111
9 0,2995 0,3373 0,3951 0,1500 0,1856 0,3489 0,3140 0,3512 0,3961
10 0,2862 0,3364 0,3845 0,1500 0,3100 0,3200 0,3140 0,3478 0,3891

Table 9.17: Best results of X-DOSE
gen nxCG strict nxCG genLifted nxCG

Task [10] [25] [50] [10] [25] [50] [10] [25] [50]
CO.Thorough (40) (42) (38) (33) (40) (41) (40) (39) (37)
CO.Focused (33) (30) (27) (34) (34) (36) (31) (30) (25)
COS.Thorough (31) (32) (31) (20) (21) (21) (30) (32) (31)
COS.Focused (21) (23) (23) (26) (21) (23) (23) (23) (21)
SSCAS (4) (15) (15) (1) (3) (7) (4) (13) (13)

times during retrieval applying a document preselection. Each document in the database was
transformed into an XML tree representation that contained the ST09 single-term content
vectors in the leaf nodes. Thus, document trees were always rooted in the /DOC elements.

The complete set of documents was clustered using hierarchical clustering. The parameter
settings were chosen according to the experiments described in Section 7.6 (αstruct = 0, 8,
βparent=0,2). The two most similar documents were merged into a supertree and got stored
in the database. During retrieval, the cluster hierarchy was kept in memory and served as
a filter. For a set of query terms, the cluster hierarchy was traversed. The content of each
cluster was used as a filter. If its similarity with the query terms was above zero, both child
clusters were investigated recursively. The search within the cluster hierarchy ended at the
leaf nodes (single documents) or at clusters that were completely dissimilar. As a result, a list
of documents that are at least similar to some degree was returned. Based on that list, only
components that were contained in one of the documents on that list were matched.

The clustering of the 16.819 documents took 50,6 hours. Since each document tree (resp.
supertree) is compared to each other, 792.956.310.739 comparisons were needed. However,
caching of pairwise similarities reduced this number to 282.845.123 ‘unique’ comparisons
that had to be calculated. The experiments given in Figure 9.14 show that retrieval time was
reduced to a high degree by exploiting the hierarchical clusters computed.

On the average, retrieval time was reduced by more than one half for all retrieval tasks.
Since clustering was applied for preselection only, neither the ranking, nor the similarities

9

9.2 Results 265

0%

20%

40%

60%

80%

100%

CO.Tho
rou

gh

Clus
ter

ed
 C

O.Tho
rou

gh

CO:Foc
us

ed

Clus
ter

ed
 C

O:Foc
us

ed

COS.Tho
rou

gh

Clus
ter

ed
 C

OS.Tho
rou

gh

COS.Foc
us

ed

Clus
ter

ed
 C

OS.Foc
us

ed

SSCAS

Clus
ter

ed
 S

SCAS

Figure 9.14: Retrieval times of clustered document components

computed did change. Summarizing these results, hierarchical clustering turned out to be an
excellent improvement of X-DOSE retrieval performance.

9.2.10 Experiments not Conducted

Two experiments planned were not conducted: A first one on query expansion of acronyms
and a second one on classification. While query expansion would have had no effect because
queries always contained the short and the full form of an acronym, an evaluation of
classification performance was lacking pre-classified data.

Query Expansion

One possibility to evaluate the effect of query expansion is to add terms included in the
multi-term index to the query automatically. This kind of expansion only would effect queries
that contain acronyms of both variants, short forms and full forms. However, all INEX queries
that included acronyms did (1) already include the short and the long form of the acronym,
or (2) were not included in the index. Thus, query expansion would not have had any effect
on the results retrieved. Experiments on query expansion were left for further X-DOSE
improvements and evaluation tasks.

Classification

An evaluation of XML document classification was not conducted in this work. The reason
for this is that no pre-classified test data was included in the INEX 2005 document retrieval
collection. Since classification of similar document components into user-defined classes

266 9 Evaluation of X-DOSE

without any comparison data is only a matter of subjective attitude, an objective evaluation
could not be conducted.

9.3 Summary

This chapter described the evaluation of the X-DOSE system. For this purpose, the document
collection and queries of the INEX 2005 evaluation workshop were used. The experiments
included a comparison of twelve single-term indices, four multi-term indices, and combina-
tions of them. Five different INEX retrieval tasks were run on X-DOSE applying numerous
parameter settings.

The experiments clearly indicated that the size of the index is not correlated directly
with the performance achieved. The quality of the index terms was essential. The four
types of multi-term indices, which were used in addition to the best performing single-term
index, turned out to improve performance considerably for all content-oriented retrieval tasks.
Important to information retrieval, indexing times and retrieval times were measured and
interpreted for each of the experiments. Best performance in both regards, retrieval quality
and processing speed, was achieved by token-type based index term extraction and stemming.
Tagging turned out to be not optimal because of wrongly identified word categories and its
computational complexity. Dynamic term space generation had no impact on the retrieval
results. A comparison of a former X-DOSE version and the current version revealed the
progress of development and highlighted the improvements achieved.

Compared to other systems used at INEX 2005, X-DOSE was not competitive in the
Content-Only (CO and COS) tasks. This was because the evaluation procedure used at INEX
penalized retrieval results computed on mapped documents and topics, as it is proposed in
this research. In contrast, Content-And-Structure (CAS) queries were processed very fast.
Since CAS evaluation was done based on strict structural matching (SSCAS), the results much
better reflected the performance of X-DOSE. For this task, X-DOSE even outperformed most
other systems.

10

Chapter 10 The best way to get a good idea is to get a lot of ideas.

L. Pauling

Conclusion

This chapter summarizes the research done in this dissertation. In particular, it highlights
the scientific contributions to the field of structured document retrieval and lessons learned.
Moreover it sheds light on some perspectives and future research directions.

10.1 Concerns

This thesis introduces structured document retrieval as a further development of traditional
information retrieval. Documents are no longer understood as flat content containers. Instead,
they look like a hierarchical structure of elements (called document components). In other
terms, the contents of a document are structured into various levels of granularity. Retrieval
systems that take advantage of that additional information source have to be adjusted to fit
the challenges coming along with this new paradigm.

XML is used as an appropriate means to represent structured documents. In order
to generalize structural elements, documents are mapped onto a generic XML document
format and are stored in a relational database. Clues about the structure, including available
metadata, are used in combination with the content to satisfy a users’ information need more
accurately. This benefits retrieval in several ways: (1) Parts of the documents usually provide
more focused answers to queries than complete documents; (2) The search engine focuses
on relevant information avoiding further search and browsing activities by users; (3) Expert
users are able to formulate highly specific queries.

Natural Language Processing (NLP) transforms the textual content of document compo-
nents into term frequency vector representations. It includes an analysis of complex linguistic
patterns that are extracted autonomously. This results in multiple representations of a text that
are used conjointly and support each other. These representations of a text allow the adoption
of modified versions of the traditional vector space model to match and rank components
according to a user query.

267

268 10 Conclusion

During retrieval, the same NLP procedures are applied on the query terms to obtain a
term frequency vector. Weighing of document and query terms is done on-the-fly. Content
similarity, metadata similarity, and structural similarity are combined to compute the relevance
of a document component to the user’s query given a set of user-defined query parameters.

Classification of similar document components into user-defined categories is proposed
as a means of enhancing and facilitating the organization and navigation in large document
repositories. Because of the hierarchical structure, components are represented as ordered
trees and compared using a distance measure. Providing the system with pre-assigned
components and categories, classification is learned and unseen components are assigned
automatically.

Computational performance is a critical issue of retrieval systems and strongly depends
on the underlying data structures and matching mechanisms. In this work, hierarchical
clustering is proposed to lower retrieval response time by creating clusters of closely related
document components. During retrieval (result computation), these clusters are used to
filter documents that do not correspond to any of the query constraints before weighing and
matching are applied.

Owing to the challenges described, X-DOSE (XML-Document Oriented Search Engine)
is developed. Based on a client-server architecture, the system processes various requests
(indexing, retrieval, classification, and clustering) in parallel. Results are transferred back to
the client, which displays them to the user. The client allows the user to browse and refine
the query too.

The performance of X-DOSE is evaluated using an official collection of real-world XML
documents provided by INEX. Well defined retrieval tasks and evaluation measures enable
a comparison of its performance against other systems using the same data and retrieval
tasks. The results demonstrate that linguistically-motivated text representations can improve
retrieval quality efficiently. The evaluation also shows that, especially for complex retrieval
tasks, X-DOSE is competitive to other systems and even outperforms them.

10.2 Contributions

The contributions achieved by this research are of two types, theoretical issues and tool
aspects. Theoretical issues cover concepts inherent in structured document retrieval, natural
language processing, text mining, and document mining (classification and clustering). Tool
aspects include the implementation of a structured document retrieval system, X-DOSE,
incorporating those concepts. It comprises natural language processing and text mining
components. Further, linguistic resources relevant to information retrieval are generated.
X-DOSE has been evaluated extensively with experiments focusing on retrieval performance.

10

10.2 Contributions 269

In addition to that, experimental results of classification and clustering improving retrieval
complement the evaluation.

10.2.1 Theoretical Contributions

� Background: An extensive overview of structured document retrieval is presented. It
includes a description of XML, the standard format for representing the structure within
text-based documents, historical development of structured document retrieval, retrieval
models, representation, indexing, storage of documents, matching and ranking, query
languages, result representation, and retrieval evaluation. Along with each of these
topics, the challenges are pinpointed and existing solutions are provided.

� Storage: The documents are stored in a relational database. In order to ensure fast
access to the structure, content, and metadata information, an existing approach is
extended to fit these requirements.

� Dynamic term spaces: Since structured documents consist not only of a single (kind
of) content, dynamic term spaces are defined. According to different structural levels
and varying content types, dynamic term spaces enable structure-related indexing and
retrieval of document components of arbitrary granularity.

� XOR query language: In cooperation with colleagues of other universities, the XML
Oriented Retrieval (XOR) language is defined. XOR supports query constraints on the
structure and on the content, and distinguishes components searched and components
retrieved. Further, boolean operators that combine subqueries, qualifiers for the structure
and the query terms, and term operators such as quotes and negation are provided.

� Extended tokenization: Representation issues of natural language texts have been
addressed in Chapter 4. In this context, extended tokenization is introduced as initial
processing step that includes token typing and multi-term concepts on different levels.
Based on language-dependent dictionaries and tokenization rules, texts are preprocessed
for subsequent analysis steps without any interpretation of their content.

� Multi-layered stopword model: In this work, stopword filtering is applied to reduce the
amount of index terms. A multi-layered stopword model of functional, content-related,
and domain-specific stopwords is motivated and implemented. Formulae for ranking
and extracting stopwords automatically are defined and tested.

� Text mining: Chapter 5 is concerned with corpus-based text mining tasks based on
the output of extended tokenization. A process that generates tokenization rules and
dictionaries of single-tokens and multi-tokens is defined and illustrated.

270 10 Conclusion

� XML classification: Aspects relevant to classification of XML components into prede-
fined categories have been discussed in Chapter 6. In this context, a similarity function
that compares two document trees is defined. Two measures that combine structural
similarity and content similarity are proposed. A first approach based on tree edit
distance focuses on the structural match of two document trees. In contrast, a second ap-
proach based on content matrix distance puts more emphasis on the content match. The
evaluation shows that best performance is achieved when both measures are combined.

� XML clustering: Clustering of structured documents is covered in Chapter 7. A novel
representation of cluster representatives based on supertrees is introduced. A merge
operation that inserts a document tree into a supertree is defined. Two similarity
functions, one that compares a document tree to a supertree, and another one that
compares two supertrees to each other, are provided. Both similarity functions support
ordered and unordered tree comparisons.

� Result ranking: Ranking, as proposed in this work, combines the similarities computed
separately for the content, structure, and metadata information. User-defined query
parameters allow to control the impact of each of these factors on the overall relevance
of a result component. Therefore, a set of ranking formulae is defined.

10.2.2 Tool Aspects

� Generic XML format: A generic XML document format is developed together with
a mapping mechanism that transforms incoming documents into that format. The
motivation of exploiting a single format for retrieval is to guarantee (1) valid document
structures, (2) uniform access to standardized components, and (3) efficient processing.

� XOR parser: In order to process queries formulated in the XOR query language correctly,
a parser based on JavaCC is implemented. It parses a valid XOR query and transforms
it into an Abstract Syntax Tree (AST).

� JavaTok: Referring to the objectives of extended tokenization, JavaTok, a tokenizer that
covers these issues, is implemented. JavaTok is available as stand-alone software, Java
class framework, and online version. Texts are processed in a pipelined architecture of
eights steps. Each step is optional and can be parameterized via a configuration file.
Token type assignment and multi-token creation are done by dictionary lookup and
rule matching. UTF-16 support and multiple output formats such as HTML and XML
facilitate the integration of JavaTok into other systems.

� Stopword list: In several experiments, a set of 804 categorized stopwords (functional,
content-related, and domain-specific) is extracted from the experimental corpus used.

10

10.2 Contributions 271

In focused experiments, performance evaluations regarding the retrieval quality of each
stopword layer are carried out.

� Generation of natural language resources: From the document collection, various nat-
ural language resources are generated to improve natural language text representation.
72 basic token types relevant to information retrieval are identified. Using that token
types, 322 corpus-specific abbreviations, over 650.000 multi-terms (composite nouns,
named entities, and formulaic speech), and about 17.000 acronyms with their full forms
are extracted into separate dictionaries. In addition to that, a rule miner is implemented.
For a given input pattern (a sequence of input tokens), it extracts statistically-motivated
identification rules based on the left and right token context of the pattern. Using that
rule miner, a set of complex multi-token rules was identified (e.g., phone numbers,
citations, acronyms).

� Experiments on XML classification: Several experiments on five different data sets
provided by INEX are conducted to evaluate the performance of XML classification.
A comparison with other classification systems shows that the approach proposed is
competitive compared to others.

� Experiments on XML clustering: Clustering performance is evaluated on six different
data sets provided by INEX. In five experiments, the performance of k-Means and
agglomerative hierarchical clustering is compared using several parameter settings.

� X-DOSE prototype: X-DOSE (XML-Document Oriented Search Engine) is implemented
to measure the effectiveness of the retrieval approach proposed in this work. X-DOSE
is based on a client-server architecture. It supports three types of queries, depending
on the expertise of the user. Internally, queries are represented in an extended XOR
syntax. Results are displayed by the client, providing browsing functionality of single
documents. A class manager enables the classification of XML components retrieved into
user-defined categories. XML clustering is integrated to speed up retrieval internally.

� Result representation: A novel graphical presentation of result components based on
treeMaps and textBars is implemented. It enables navigation within the structure of a
result document/component by supporting users with a relevance-based color schema
that reflects content and metadata similarities.

� Evaluation of X-DOSE: An extensive evaluation of the X-DOSE retrieval performance
focusing on computational complexity and retrieval quality is conducted. Relying on an
official corpus of about 17.000 computer science documents, nine separate experiments
focus on the quality of text representations, the interaction of structure, metadata, and
content information, optimal parameter settings, and response time reduction. An

272 10 Conclusion

evaluation metric based on cumulated gain (nxCG) is used to express the performance
of each retrieval task. Performance comparisons of similar systems using the same data
show that X-DOSE is competitive and even outperforms other systems.

10.3 Lessons Learned

Research in the field of structured document retrieval is up-to-date and just at its begin-
ning. Only with fundamental knowledge about the internal processing and functioning of
these systems, adequate solutions to the difficulties described become feasible. Especially,
computational performance is an issue that researchers and developers must be aware of.
Although hardware becomes more powerful, faster, and cheaper, it is surely not the answer to
manage the complexity of processing structured documents. Hence, it might be interesting
for other researchers in this field to draw some conclusions from the theoretical work and the
experiments.

� Text representation: Experimental results demonstrate that even in structured docu-
ments content information is more important than structural or metadata information.
Thus, improvements of text representations improve the retrieval quality of structured
documents. Especially extended tokenization supporting token typing and multi-terms,
as proposed in this work, turns out to be an effective technique to pre-process textual
content efficiently. Subsequent processing steps such as tagging strongly rely on the
correctness of the tokenization output. Filtering of functional, content-related, and
domain-specific stopwords further improves the quality of index terms while reducing
the size of the vocabulary.

� Metadata matching: Experiments show that metadata matching and content matching
has to be performed differently. For instance, skipping stopword filtering for matching
metadata leads to retrieval of a huge number of unwanted components (e.g., documents,
sections, tables, figures). This is because functional stopwords (e.g., ‘a’, ‘the’, ‘and’) are
included frequently in metadata fields such as titles and captions. Retrieval based on
metadata constraints has also to be reconsidered. A two-step procedure turned out to
perform best: Metadata requests are transformed into SQL statements and processed
by the database efficiently. For the results retrieved, similarity of metadata terms and
query terms is computed using an overlap-based function on the two term sets.

� Performance: Indexing, retrieval, classification, and clustering of structured documents
is more complex than it is in traditional information retrieval. Since performance is
crucial for retrieval systems, processing must be efficient to ensure acceptable response

10

10.4 Future Research Directions 273

times even for large amounts of data. This is especially true for structured document
retrieval.

� Dynamic aspects: The possibility to keep term weights dynamic (on-the-fly computation
during retrieval) becomes expensive in terms of processing performance. Although
dynamic aspects are relevant and should be maintained, pre-computed and static
representations stored might be necessary to speed up processing.

� Data structures: Related to the performance issue, appropriate data structures are
the foundation of efficient processing. Especially tree data structures, as created by
hierarchical clustering for document pre-selection, speeded up retrieval performance
considerably. This concept might be transferred to improve the access to other data such
as hierarchical text representations where common terms of two representations are
raised one level higher in a representation tree.

10.4 Future Research Directions

There are a variety of exciting future directions in which the present work can be continued.
Some of these directions were already presented at the end of Chapters 6 and 8. Other aspects
worthy to be investigated further include:

� Text mining: Identification of textual patterns that go beyond multi-tokens such as
named entities or citations is definitely a promising step to improve text analysis
and, consequently, information retrieval. Besides the generation of static dictionaries,
mechanisms that derive rules to dynamically identify these patterns in texts are an
interesting issue. Applying these resources, for instance, in taggers, tagging statistics
and tagging rules are reduced and simplified while the overall performance is increased
regarding both, tagging quality and processing speed.

� Shallow parsing: The output of extended tokenization might be used to identify
constituents of sentences such as noun phrases or verb phrases. For instance, the
sequence FSi + FSj + ALPHA_COMMON_LOWER (two functional stopwords fol-
lowed by a lower case term) might be glued together as a single noun phrase (e.g., in
the house, on the tree, of the road). Applying this mechanism recursively using
different rule repositories, shallow parsing functionality based on token types is accom-
plished. Because of JavaTok’s processing speed, this kind of parsing requires only little
computational time. Hence, it is applicable to process even large amounts of data.

� Additional experiments: Most evaluations conducted in this research are based on
the INEX document collection containing documents of a single domain. Further

274 10 Conclusion

experiments using other corpora and queries are necessary to gain higher external
validity. This includes that dictionaries and rules generated might also be enriched by
patterns of other domains.

� Document structure: The generic XML format proposed is an initial step towards a
general model for structuring (text) documents. From the retrieval perspective, the three
main elements for structuring a document, (DOC, SEC, and FRA), seem to be sufficient.
However, metadata fields for each component were chosen according to the information
available in the source documents. These data fields have to be reconsidered for
the general case. The generic format further supports sub-structured content within
fragments (FRA elements). However, there are no standards available that ensure a
correct syntax. According to the type of a fragment (e.g, table, list, figure, formula),
schemata that define these substructures are needed. To realize this, there exist several
alternatives such as the usage of HTML-like table syntax and MathML markup for
formulae.

� Structural similarity: In the current approach, constraints on the structure are imple-
mented as strict filters. This speeds up retrieval, but prohibits a vague matching of
structural constraints (meant as structural hints). Assuming complex nested document
structures, vague matching might be beneficial to both, query formulation and retrieval
quality.

In sum, the goal of this thesis has been successfully achieved. In line with this research, a
fully functioning structured document retrieval system called X-DOSE has been implemented.
Of course, further developments may concentrate on the extension, optimization, and tuning
of X-DOSE. Beyond that, the broadness and application area of structured document retrieval
leaves much open space for future researchers.

A

Appendix A Creativity is the power to connect the seemingly unconnected.

William Plomer

Appendix

A.1 Extracted Stopword Lists

Tables A.1 to A.3 summarize all stopwords extracted according to their word categories and
stopword layers, functional F, content-related C, and domain-specific D. The domain of these
stopwords is computer science and information technology.

Table A.1: Final list of functional stopwords (English, INEX)
Category Terms
F_DET (10) a, an, here, some, that, the, there, these, this, those

F_AUX (33)
am, are, be, became, become, becomes, becoming, been, being, can, cannot, could, did,
do, does, doing, done, had, has, have, having, is, make, may, might, must, ought,
shall, should, was, were, will, would

F_PREP (47)

about, above, across, after, against, along, among, amongst, around, aside, at,
before, beforehand, behind, below, beside, between, beyond, by, down, for, from, in,
into, near, of, off, on, onto, out, outside, per, since, through, thru, to, toward,
towards, under, until, unto, up, upon, via, with, within, without

F_PRON (70)

another, anybody, anyhow, anyone, anything, anyway, anywhere, during, elsewhere,
everybody, everyone, everything, everywhere, he, her, hers, herself, him, himself,
his, how, i, it, its, itself, me, mine, my, myself, nobody, none, noone, nowhere, our,
ours, ourselves, she, somebody, somehow, someone, something, sometime, somewhat,
somewhere, such, that, their, theirs, them, themselves, they, us, we, what, when,
whence, where, which, whither, who, whoever, whom, whomever, whose, why, you, your,
yours, yourself, yourselves

F_PART (17)
almost, as, down, even, just, no, off, out, over, quite, rather, so, to, too, up,
very, yes

F_CONN (37)

after, although, and, because, before, but, further, furthermore, hence, howbeit, if,
insofar, instead, like, neither, nonetheless, nor, not, or, since, than, then, thence,
therefore, though, thus, unless, until, whenever, whereafter, whereas, whereby,
wherein, whereupon, wherever, whether, while

F_LOG_OP (3) and, not, or

F_Q (43)

all, billion, both, each, eight, eighty, eleven, every, few, fifteen, fifth, fifty,
first, five, forty, four, many, million, much, multiple, nine, ninety, often, one,
second, secondly, seven, seventy, six, sixty, some, ten, third, thirty, thousand,
three, trillion, twelve, twenty, twice, two, various, zero

275

276 A Appendix

Table A.2: Final list of content-related stopwords (English, INEX)
Category Terms

CR_ADV (139)

accordingly, actually, actually, afterwards, again, along, already, also, always, any,
apart, approximately, away, awfully, back, besides, certainly, clearly, clearly,
closely, completely, consequently, currently, definitely, differently, directly,
downwards, due, easily, either, else, entirely, especially, even, evenly, ever,
exactly, explicitly, extremely, far, finally, first, formerly, frequently, fully,
generally, hardly, hereafter, hereby, herein, hereupon, highly, hither, hopefully,
however, immediately, inasmuch, increasingly, indeed, independently, inward, lately,
latterly, less, likely, mainly, meanwhile, merely, more, moreover, most, mostly, much,
namely, nearly, necessarily, never, nevertheless, non, normally, nothing, now,
nowhere, obviously, often, once, only, otherwise, over, overall, particularly,
perhaps, possibly, preferably, presumably, previously, primarily, probably, quickly,
rather, really, reasonably, recently, relatively, respectively, seriously,
significantly, similarly, simply, simultaneously, slightly, sometimes, soon,
specifically, still, successfully, sure, thereafter, thereby, therein, thereof,
thereto, thereupon, thorough, thoroughly, throughout, today, together, truly,
typically, unfortunately, unfortunately, unlikely, usually, very, well, whatever,
widely, yet

CR_ADJ (102)

additional, alone, appropriate, available, basic, best, better, big, brief, certain,
clear, common, complete, current, different, difficult, due, early, easy, enough,
entire, except, former, forth, full, general, good, great, greater, greatest, high,
higher, highest, immediate, important, independent, initial, inner, kind, large,
largely, larger, last, later, latest, latter, least, little, long, longer, longest,
low, lower, main, main, major, mean, near, necessary, new, newer, newest, next, novel,
old, older, oldest, original, other, own, particular, possible, potential, previous,
real, recent, regardless, right, same, sensible, serious, several, significant,
similar, simple, single, small, smaller, smallest, sorry, special, specific, standard,
suitable, thick, thin, total, useful, whole, young, younger, youngest

CR_N (76)

ability, abstract, addition, address, advantage, amount, area, areas, basis, case,
cases, change, changes, cost, curricula, degree, details, difference, effect, end,
example, fact, field, focus, form, future, goal, group, hand, help, individual,
interest, interests, issue, issues, key, level, means, need, needs, ones, order,
others, paper, part, place, point, potential, problem, problems, project, range,
regards, result, results, section, set, sets, size, solution, space, step, study,
support, terms, time, times, type, types, use, view, vitae, way, ways, work, years

CR_V (189)

able, according, achieve, achieved, added, adding, address, allow, allowing, allows,
applied, apply, applying, associated, assume, based, began, beginning, being,
building, called, came, change, changing, come, compared, consider, considered,
considering, consists, contain, containing, contains, corresponding, create, created,
creating, depending, depends, derived, describe, described, detailed, determine,
determined, differ, discussed, effect, end, existing, expected, find, finding, fixed,
focus, following, follows, form, found, gave, get, gets, getting, give, given, gives,
go, goes, going, gone, got, gotten, group, hand, help, improve, improved, include,
included, includes, including, increase, increased, increasing, interested,
interesting, introduced, involved, issue, issues, keep, keeps, kept, knew, know,
known, knows, leading, less, let, lets, like, liked, liked, likes, limited, made,
makes, making, maybe, need, needed, needing, needs, obtain, obtained, okay, order,
organized, part, place, point, preferred, present, presented, presenting, presents,
produce, proposed, provide, provided, provides, providing, published, put, puts,
received, reduce, reduced, reducing, regarding, related, remaining, require, required,
requires, result, resulting, see, seeing, seem, seemed, seeming, seems, selected,
self, set, show, shown, shows, specify, specifying, starting, step, study, sub,
support, take, taken, takes, taking, took, type, underlying, understanding, unlike,
use, used, uses, using, want, wanted, wanting, wants, went, work, worked, working,
works

A

A.1 Extracted Stopword Lists 277

Table A.3: Final list of domain-specific stopwords (English, INEX)
Category Terms
D_ADV (3) automatically, effectively, efficiently
D_ADJ (6) complex, effective, efficient, local, national, technical

D_N (58)

access, algorithm, algorithms, analysis, application, applications, approach,
approaches, architecture, complexity, components, computer, control, data, department,
design, development, environment, features, function, functions, hardware,
implementation, information, input, institute, knowledge, management, member, method,
methods, model, models, network, number, operations, performance, process, professor,
program, requirements, research, science, software, structure, system, systems,
technique, techniques, technology, tools, trans, university, user, users, value,
values, version

D_V (38)

access, computing, control, define, defined, design, designed, develop, developed,
developing, distributed, engineering, extended, function, generate, generated,
implemented, input, integrated, model, modeling, operating, perform, performed,
performing, process, processing, programming, represent, represented, representing,
represents, run, running, sets, specified, supported, testing

278 A Appendix

A.2 Extracted Patterns Suited for Composite Nouns

Table A.4: Top 24 extracted composite noun suited patterns of length two
Multi-term t f d f
execution time 6.870 1.405
electrical engineering 6.333 3.316
response time 3.803 804
source code 3.768 1.403
fault tolerance 3.758 1.024
upper bound 3.369 1.228
worst case 3.035 1.305
experimental results 2.930 1.517
test cases 2.839 511
wide range 2.657 1.969
image processing 2.563 1.307
programming language 2.347 1.294
programming languages 2.218 1.235
neural networks 2.167 868
virtual channels 2.156 135
shared memory 2.127 686
load balancing 2.073 561
distributed computing 2.022 1.237
power consumption 1.968 611
pattern recognition 1.947 917
simulation results 1.915 893
fault coverage 1.864 315
state space 1.839 381
computation time 1.838 750

A

A.2 Extracted Patterns Suited for Composite Nouns 279

Table A.5: Top 24 extracted composite noun suited patterns of length three
Multi-term t f d f
digital signal processing 385 301
natural language processing 303 186
partial differential equations 302 210
cache hit ratio 282 46
directed acyclic graph 251 198
average response time 251 121
test pattern generation 249 148
distributed shared memory 249 150
computational fluid dynamics 247 188
finite state machine 243 129
personal digital assistants 218 205
dynamic load balancing 209 90
middle stage switches 205 7
path delay faults 199 22
cache coherence protocol 193 68
artificial neural networks 191 144
finite state machines 186 111
average execution time 175 66
intellectual property rights 174 110
statistical pattern recognition 170 102
cache line size 170 69
state transition diagram 166 71
consistent global checkpoint 154 11
false alarm rate 150 46

Table A.6: Top 24 extracted composite noun suited patterns of length four
Multi-term t f d f
automatic test pattern generation 79 68
extended channel dependency graph 62 8
dynamic buffer allocation scheme 55 1
linear feedback shift register 51 38
parallel task completion time 48 1
worst case response time 40 7
call channel occupancy time 35 1
worst case computation time 31 9
linear feedback shift registers 30 24
identically distributed random variables 30 23
solving partial differential equations 29 26
maximum average waiting time 28 1
state space explosion problem 27 16
optimal linear schedule vector 26 3
worst case execution time 25 20
optical flow constraint equation 25 9
hierarchical aggregate selection queries 25 1
distributed memory parallel computers 25 16
cumulative call variable usage 24 1
byte error correcting code 24 5
white box code inheritance 23 2
uniform leader election protocol 23 1
parallel discrete event simulation 23 16
timewheel atomic broadcast protocol 22 2

280 A Appendix

Table A.7: Top 24 extracted composite noun suited patterns of length five
Multi-term t f d f
handoff call channel occupancy time 19 1
submit queries concerning historical events 10 10
average message latency versus traffic 10 4
scholarly archival journals inform readers 9 9
procedurally generated partial product reduction 9 1
minimal cost distribution tree problem 9 1
generated partial product reduction tree 9 1
vertex versus maximal clique incidence 8 1
row shift invariant wavelet packet 8 1
robust path delay fault coverage 8 2
shift invariant wavelet packet transform 7 1
scheduling precedence constrained parallel tasks 7 1
recoverable distributed shared virtual memory 7 1
maximum average waiting time requirement 7 1
fault tolerant wormhole routing strategy 7 7
extended multicast channel dependency graph 7 1
adaptive row shift invariant wavelet 7 1
time varying flow field visualization 6 1
symmetric symbol error correcting codes 6 1
conditional steady state probability vector 6 3
versus maximal clique incidence matrices 5 1
spanning tree carry lookahead adder 5 2
solicits papers giving preliminary results 5 5
random field modeled textured images 5 1

Table A.8: Top 24 extracted composite noun suited patterns of length six
Multi-term t f d f
procedurally generated partial product reduction tree 9 1
row shift invariant wavelet packet transform 7 1
adaptive row shift invariant wavelet packet 7 1
vertex versus maximal clique incidence matrix 4 1
vertex versus maximal clique incidence matrices 4 1
produces dependency preserving nested database schemes 4 1
nonbalanced identically distributed binary random variables 4 1
beam addressed swept volume display unit 4 1
systolic redundant residue arithmetic error correction 3 2
redundant residue arithmetic error correction circuit 3 2
plot normalized deadlocks versus load rate 3 1
partial differential equations describing physical phenomena 3 3
interactive event service giving conference dates 3 3
handoff call channel occupancy time distribution 3 1
disk array controller signals service completion 3 1
database schema satisfies generalized entity integrity 3 1
coarse time scale traffic smoothing mode 3 1
cluster generative statistical dynamic time warping 3 1
wird etwas knapp bei mir sagen 2 1
unstructured sparse symmetric positive definite matrices 2 1
une courbe qui remplit toute une 2 2
ultimately simplify text composition tasks faced 2 2
trusted graphics server applet stored locally 2 2
time instant object component retrieval request 2 1

A

A.2 Extracted Patterns Suited for Composite Nouns 281

Table A.9: Top 24 extracted composite noun suited patterns of length seven
Multi-term t f d f
adaptive row shift invariant wavelet packet transform 7 1
systolic redundant residue arithmetic error correction circuit 3 2
wird etwas knapp bei mir sagen wir 2 1
une courbe qui remplit toute une aire 2 2
temporal strata translate temporal query language statements 2 1
recommended practices define ethical standards define educational 2 2
practices define ethical standards define educational curricula 2 2
law enforcement agencies continually analyze vast amounts 2 2
knapp bei mir sagen wir lieber vierzehn 2 1
etwas knapp bei mir sagen wir lieber 2 1
courbe qui remplit toute une aire plaine 2 2
classification assumes locally constant class conditional probabilities 2 2
block sharing implies strong interprocess spatial locality 2 2
beam addressed swept volume display unit employing 2 1
authors propose task assignment effort adjustment factors 2 2
atlas anatomy removes individual anatomical shape variations 2 2
allocation strategies dramatically outperform contiguous allocation
strategies

2 1

acyclic channel dependency graph guarantees deadlock freedom 2 1
zeroset copyset clrbit setbit tstbit xrealloc xmalloc 1 1
xrealloc freelist lex error enlist dfainit insert 1 1
xmalloc dfaerror addtok xrealloc freelist lex error 1 1
write aent ante acrt cart aent neat 1 1
woodword ted kaczynski competency birmingham islam blaze 1 1
wiring channels cause extra wiring path delays 1 1

282 A Appendix

A.3 Extracted Patterns Suited for Named Entities

Table A.10: Top 24 extracted named entity suited patterns of length two
Multi-term t f d f
Pattern Recognition 5.914 1.575
Machine Intelligence 5.670 1.568
Artificial Intelligence 4.802 1.819
Distributed Computing 3.885 1.749
Parallel Processing 3.057 1.227
Image Processing 2.797 1.200
World Wide 2.734 1.537
Wide Web 2.658 1.508
Neural Networks 2.230 715
Signal Processing 2.039 1.006
Carnegie Mellon 2.024 1.147
International Conference 1.889 1.144
Electrical Engineering 1.581 1.076
Programming Languages 1.509 810
United States 1.473 826
Hong Kong 1.403 511
Reader Service 1.381 303
San Diego 1.336 741
Los Angeles 1.332 888
Parallel Computing 1.283 723
Machine Learning 1.235 475
Semantic Web 1.231 179
Monte Carlo 1.216 397
Air Force 1.139 628

A

A.3 Extracted Patterns Suited for Named Entities 283

Table A.11: Top 24 extracted named entity suited patterns of length three
Multi-term t f d f
World Wide Web 2.650 1.505
Pattern Recognition Letters 444 287
Unified Modeling Language 394 274
Internet Engineering Task 328 284
Ad Hoc Networks 311 74
Object Request Broker 300 207
North Carolina State 298 209
Jet Propulsion Laboratory 282 186
Wide Web Consortium 274 232
Engineering Task Force 274 238
International Test Conference 269 183
Artificial Neural Networks 269 180
Extensible Markup Language 264 217
Upper Saddle River 244 129
Distributed Shared Memory 237 102
Stochastic Petri Nets 234 43
Java Virtual Machine 234 138
Guest Editors Introduction 223 223
Reader Interest Survey 211 205
Digital Signal Processing 211 144
Interest Survey Indicate 204 204
Wall Street Journal 203 149
Tau Beta Pi 195 178
Naval Postgraduate School 194 134

Table A.12: Top 24 extracted named entity suited patterns of length four
Multi-term t f d f
World Wide Web Consortium 272 230
Internet Engineering Task Force 272 237
Reader Interest Survey Indicate 204 204
Goddard Space Flight Center 166 118
Virtual Reality Modeling Language 150 136
Mobile Ad Hoc Networks 114 47
San Diego Supercomputer Center 90 63
Ad Hoc Wireless Networks 83 45
Web Services Description Language 77 61
Field Programmable Gate Arrays 73 50
Wireless Ad Hoc Networks 69 34
Markov Chain Monte Carlo 68 43
Generalized Stochastic Petri Nets 66 28
Accelerated Strategic Computing Initiative 62 55
Synchronized Multimedia Integration Language 61 45
North Atlantic Test Workshop 60 54
San Jose Mercury News 56 47
Ordered Binary Decision Diagrams 46 28
International Parallel Processing Symposium 46 42
Mobile Ad Hoc Networking 45 30
Enterprise Distributed Object Computing 43 42
Digital Millennium Copyright Act 40 36
Imagery Pattern Recognition Workshop 35 31
World Intellectual Property Organization 34 33

284 A Appendix

Table A.13: Top 24 extracted named entity suited patterns of length five
Multi-term t f d f
Sara Reese Hedberg Sara Reese 23 23
Reese Hedberg Sara Reese Hedberg 23 23
Linda Dailey Paulson Linda Dailey 23 23
Dailey Paulson Linda Dailey Paulson 23 23
Markov Regenerative Stochastic Petri Nets 22 8
Iowa State College Statistical Laboratory 22 1
Upsilon Pi Epsilon Student Award 19 11
Unified Modeling Language Reference Manual 19 19
Neural Networks Outstanding Paper Award 19 19
Fault Tolerant Wormhole Routing Strategy 19 19
Lance Stafford Larson Student Scholarship 18 13
International World Wide Web Conference 15 12
Virtual Reality Annual International Symposium 14 13
Inverse Visual Problems Involving Discontinuities 13 13
Electronic Delay Storage Automatic Calculator 13 8
Air Force Flight Dynamics Laboratory 12 12
Mary Jean Harrold Mary Jean 11 11
Jean Harrold Mary Jean Harrold 11 11
Enterprise Distributed Object Computing Workshop 11 11
British Association Mathematical Tables Committee 11 3
Air Force Scientific Advisory Board 11 10
Ad Hoc Mobile Wireless Networks 11 11
Wright Patterson Air Force Base 10 8
Robot World Cup Soccer Games 10 9

Table A.14: Top 24 extracted named entity suited patterns of length six
Multi-term t f d f
Sara Reese Hedberg Sara Reese Hedberg 23 23
Linda Dailey Paulson Linda Dailey Paulson 23 23
Mary Jean Harrold Mary Jean Harrold 11 11
Shari Lawrence Pfleeger Shari Lawrence Pfleeger 9 9
Khaled El Emam Khaled El Emam 9 9
Alberto Del Bimbo Alberto Del Bimbo 8 8
Mo Kim Cheng Albert Mo Kim 7 7
Kim Cheng Albert Mo Kim Cheng 7 7
Hee Yong Youn Hee Yong Youn 7 7
Andy Hunt Dave Thomas Andy Hunt 7 7
Albert Mo Kim Cheng Albert Mo 7 7
Timothy Mark Pinkston Timothy Mark Pinkston 6 6
Sung Yong Shin Sung Yong Shin 6 6
Norris Parker Smith Norris Parker Smith 6 6
Lizy Kurian John Lizy Kurian John 6 6
Laxmi Narayan Bhuyan Laxmi Narayan Bhuyan 6 6
Giovanni De Micheli Giovanni De Micheli 6 6
Dik Lun Lee Dik Lun Lee 6 6
David Alan Grier David Alan Grier 6 6
Beng Chin Ooi Beng Chin Ooi 6 6
Song Chun Zhu Song Chun Zhu 5 5
Sang Lyul Min Sang Lyul Min 5 5
Reversible Jump Markov Chain Monte Carlo 5 4
Pam Frost Gorder Pam Frost Gorder 5 5

A

A.3 Extracted Patterns Suited for Named Entities 285

Table A.15: Top 24 extracted named entity suited patterns of length seven
Multi-term t f d f
Mo Kim Cheng Albert Mo Kim Cheng 7 7
Albert Mo Kim Cheng Albert Mo Kim 7 7
Optimal Infinite Impulse Response Edge Detection Filters 5 5
Stochastic Petri Nets Representing Generalized Service Networks 4 4
Reversible Jump Markov Chain Monte Carlo Computation 4 4
Oak Ridge Association Junior Faculty Enhancement Award 3 3
International Test Conference Tutorials Washington Sheraton Hotel 3 3
Whitaker Jane Wilhelms Yves Willems Peter Williams 2 2
Victor De La Luz Victor De La 2 2
Time Warp Synchronized Parallel Discrete Event Simulation 2 2
Stereoscopic Image Pairs Assuming Piecewise Continuous Surfaces 2 2
Sillion Bruno Silva Claudio Silva Deborah Silver 2 2
San Diego Supercomputer Center Networked Volume Renderer 2 2
San Diego Supercomputer Center Creative Computing Award 2 2
Robertson Phil Robertson Alyn Rockwood Jon Rokne 2 2
Petri Nets Representing Generalized Service Networks Abstract 2 2
Nets Representing Generalized Service Networks Abstract Abstract 2 2
Natural Microbial Populations Reveals Tertiary Structural Elements 2 2
Marcello Pelillo Josiane Zerubia Guest Editors Curricula 2 2
Larry Aupperle Rick Avila Ron Azuma Norman 2 2
James Arvo Larry Aupperle Rick Avila Ron 2 2
Hee Beng Kuan Tan Hee Beng Kuan 2 2
Hans Hagen Bernd Hamann Pat Hanrahan Chuck 2 2
Hancock Marcello Pelillo Josiane Zerubia Guest Editors 2 2

286 A Appendix

A.4 Extracted Patterns Suited for Formulaic Speech

Table A.16: Top 24 extracted formulaic speech suited patterns of length two
Multi-term t f d f
computer science 29.743 8.233
research interests 14.241 6.737
et al 12.946 3.645
software engineering 11.901 2.927
interests include 11.382 5.923
vitae curricula 11.048 11.048
computer vision 10.632 1.851
other hand 10.266 5.282
data set 8.604 1.525
computer society 8.379 3.859
software development 8.023 2.546
distributed systems 7.985 2.749
computer graphics 7.927 1.880
data sets 6.943 1.528
information systems 6.554 2.577
operating system 6.451 2.425
other words 6.054 3.301
see figure 6.043 2.201
total number 5.978 2.601
pattern analysis 5.691 1.546
same time 5.126 3.376
operating systems 5.106 2.434
computer engineering 5.020 2.477
user interface 4.892 1.963

A

A.4 Extracted Patterns Suited for Formulaic Speech 287

Table A.17: Top 24 extracted formulaic speech suited patterns of length three
Multi-term t f d f
vitae curricula vitae 11.048 11.048
curricula vitae curricula 11.048 11.048
research interests include 10.260 5.479
parallel and distributed 6.937 2.158
analysis and machine 5.425 1.487
degree in computer 4.603 2.397
institute of technology 4.563 2.775
shown in figure 4.430 2.078
number of processors 3.559 793
described in section 3.545 1.819
department of computer 3.513 2.221
national science foundation 3.390 2.464
university of california 3.315 1.951
science and engineering 2.985 1.829
shown in table 2.901 1.570
professor of computer 2.663 2.010
number of nodes 2.652 932
electrical and computer 2.486 1.442
hardware and software 2.392 1.506
discussed in section 2.301 1.372
point of view 2.300 1.534
organized as follows 2.152 2.115
degree in electrical 2.112 1.339
university of illinois 2.058 1.151

Table A.18: Top 24 extracted formulaic speech suited patterns of length four
Multi-term t f d f
curricula vitae curricula vitae 11.048 11.048
pattern analysis and machine 5.404 1.480
analysis and machine intelligence 5.384 1.478
science from the university 3.796 2.575
degree in computer science 3.765 2.125
parallel and distributed systems 3.052 1.344
department of computer science 2.938 1.934
professor in the department 2.342 1.796
engineering from the university 2.337 1.742
electrical and computer engineering 2.334 1.383
professor of computer science 2.287 1.739
science at the university 2.173 1.593
parallel and distributed computing 2.133 1.146
vision and pattern recognition 1.947 745
computer vision and pattern 1.937 737
computer science and engineering 1.917 1.225
degree in electrical engineering 1.814 1.220
engineering at the university 1.389 1.060
degrees in computer science 1.347 1.091
presented in this paper 1.280 917
engineering and computer science 1.259 898
due to the fact 1.176 851
electrical engineering and computer 1.149 808
current research interests include 1.060 878

288 A Appendix

Table A.19: Top 24 extracted formulaic speech suited patterns of length five
Multi-term t f d f
pattern analysis and machine intelligence 5.378 1.476
computer science from the university 3.602 2.455
paper is organized as follows 2.005 2.005
computer science at the university 1.998 1.465
computer vision and pattern recognition 1.918 733
electrical engineering and computer science 1.055 756
curricula vitae of curricula vitae 1.024 564
electrical engineering from the university 961 798
authors would like to thank 877 865
department of electrical and computer 822 599
associate professor in the department 771 691
assistant professor in the department 740 654
member of the technical staff 627 505
university of texas at austin 624 425
computer engineering from the university 599 522
vitae curricula vitae of curricula 550 550
work was supported in part 545 537
state university of new york 540 382
computer engineering at the university 537 429
associate professor of computer science 527 480
lecture notes in computer science 521 357
knowledge discovery and data mining 500 256
engineering from the indian institute 477 390
programming languages and operating systems 470 269

Table A.20: Top 24 extracted formulaic speech suited patterns of length six
Multi-term t f d f
professor in the department of computer 1.224 986
department of electrical and computer engineering 818 597
vitae curricula vitae of curricula vitae 550 550
curricula vitae curricula vitae of curricula 550 550
science from the university of california 542 459
professor in the department of electrical 525 457
annals of the history of computing 469 218
department of computer science and engineering 466 357
vitae of curricula vitae of curricula 457 241
support for programming languages and operating 453 259
rest of the paper is organized 452 452
transactions on knowledge and data engineering 358 257
computer science department at the university 356 305
professor of electrical and computer engineering 354 317
rest of this paper is organized 350 350
professor in the computer science department 347 309
science from the university of illinois 330 286
research interests are in the areas 328 294
transactions on parallel and distributed systems 312 263
science at the university of california 303 242
science and engineering at the university 296 233
national institute of standards and technology 294 253
transactions on pattern analysis and machine 290 197
remainder of this paper is organized 290 290

A

A.4 Extracted Patterns Suited for Formulaic Speech 289

Table A.21: Top 24 extracted formulaic speech suited patterns of length seven
Multi-term t f d f
degree in computer science from the university 1.139 857
professor in the department of computer science 1.001 833
professor of computer science at the university 624 548
department of computer science at the university 580 476
curricula vitae curricula vitae of curricula vitae 550 550
computer science from the university of california 515 434
vitae of curricula vitae of curricula vitae 457 241
curricula vitae of curricula vitae of curricula 457 241
degrees in computer science from the university 452 412
support for programming languages and operating systems 448 255
architectural support for programming languages and operating 441 258
electrical and computer engineering at the university 426 346
associate professor in the department of computer 417 391
engineering from the indian institute of technology 413 353
assistant professor in the department of computer 404 363
degree in electrical engineering from the university 351 311
computer science from the university of illinois 328 284
computer science at the university of california 292 232
transactions on pattern analysis and machine intelligence 288 196
computer science and engineering at the university 280 218
engineering and computer science at the university 246 197
electrical and computer engineering from the university 242 218
department of electrical engineering and computer science 242 166
circling the appropriate number on the reader 208 208

290 A Appendix

A.5 Extracted Acronyms

Table A.22: Top 24 extracted acronyms of length two
Acronym Full form t f d f
IP internet protocol 90 2
IP intellectual property 63 2
VR virtual reality 58 2
AI artificial intelligence 52 4
ML maximum likelihood 45 1
PE processing element 43 3
CA cellular automata 43 2
CT computed tomography 42 3
RF radio frequency 41 2
SA simulated annealing 39 1
GA genetic algorithm 33 1
IR information retrieval 32 3
EM expectation maximization 31 2
OS operating system 30 2
IT information technology 26 2
DP dynamic programming 23 2
NN nearest neighbor 23 7
PC program counter 22 2
MR magnetic resonance 22 4
VE virtual environment 20 1
MD molecular dynamics 19 1
SC sequential consistency 18 1
EU european union 18 1
NI network interface 17 2

A

A.5 Extracted Acronyms 291

Table A.23: Top 24 extracted acronyms of length three
Acronym Full form t f d f
NSF national science foundation 207 16
ATM asynchronous transfer mode 154 2
UML unified modeling language 105 3
RDF resource description framework 98 4
GPS global positioning system 95 4
PCA principal component analysis 90 1
DAG directed acyclic graph 90 3
API application programming interface 86 3
MAP maximum a posteriori 86 3
FFT fast fourier transform 83 3
LRU least recently used 80 4
SVD singular value decomposition 79 2
MIT massachusetts institute of technology 74 2
DCT discrete cosine transform 72 3
MPI message passing interface 72 4
IDL interface definition language 71 3
GUI graphical user interface 70 2
RMI remote method invocation 68 2
CGI common gateway interface 67 2
JVM java virtual machine 65 3
SSL secure sockets layer 62 2
MRI magnetic resonance imaging 59 7
UDP user datagram protocol 59 2
MDL minimum description length 58 3

Table A.24: Top 24 extracted acronyms of length four
Acronym Full form t f d f
IETF internet engineering task force 97 4
VRML virtual reality modeling language 92 3
VLIW very long instruction word 69 2
SOAP simple object access protocol 62 10
ISCA int’l symp. computer architecture 56 1
VLSI very large scale integration 55 3
NIST national institute of standards and technology 54 3
SGML standard generalized markup language 47 3
WSDL web services description language 43 7
PSTN public switched telephone network 42 3
SNMP simple network management protocol 39 2
VLDB very large data bases 39 2
PARC palo alto research center 39 3
LFSR linear feedback shift register 38 2
SMIL synchronized multimedia integration language 38 2
ARPA advanced research projects agency 38 3
PODS principles of database systems 38 3
ATPG automatic test pattern generation 36 2
ICDE int’l conf. data eng. 36 2
CDMA code division multiple access 35 3
CVPR computer vision and pattern recognition 35 9
MTTF mean time to failure 35 2
ANSI american national standards institute 34 3
LDAP lightweight directory access protocol 34 2

292 A Appendix

Table A.25: Top 24 extracted acronyms of length five
Acronym Full form t f d f
DARPA defense advanced research projects agency 88 6
CORBA common object request broker architecture 81 3
KAIST korea advanced institute of science and technology 52 9
CIPIC center for image processing and integrated computing 20 6
ICDCS int’l conf. distributed computing systems 20 2
ISSTA int’l symp. software testing and analysis 16 3
EPSRC engineering and physical sciences research council 16 3
TAPOS theory and practice of object systems 16 2
ENIAC electronic numerical integrator and computer 16 2
NSERC natural sciences and engineering research council 15 1
RIACS research institute for advanced computer science 12 3
ICASE institute for computer applications in science and engineering 11 5
ICANN internet corporation for assigned names and numbers 11 2
EDSAC electronic delay storage automatic calculator 10 2
DARPA defense advanced research project agency 10 2
IJCAI int’l joint conf. artificial intelligence 10 1
ISCAS international symposium on circuits and systems 10 1
ICDCS international conference on distributed computing systems 10 3
TOSEM transactions on software engineering and methodology 10 3
NPACI national partnership for advanced computational infrastructure 9 3
AFIPS american federation of information processing societies 9 1
PPOPP principles and practice of parallel programming 9 4
HKUST hong kong university of science and technology 9 3
NSERC natural science and engineering research council 8 1

Table A.26: Top 24 extracted acronyms of length six
Acronym Full form t f d f
ASPLOS architectural support for programming languages and operating systems 25 3
TAPADS theoretical aspects of parallel and distributed systems 11 5
SIGMOD special interest group on management of data 10 1
PECASE presidential early career award for scientists and engineers 9 3
ICLASS illinois computer laboratory for aerospace systems and software 9 8
DOCSIS data over cable service interface specification 7 2
LSSDSV large scientific and software data set visualization 6 4
UMIACS university of maryland institute for advanced computer studies 6 2
ASPLOS architecture support for programming languages and operating systems 5 1
CESDIS center for excellence in space data and information sciences 4 1
DCGMRP delay constrained group multicast routing problem 4 1
NCCUSL national conference of commissioners on uniform state laws 4 1
TOMACS transactions on modeling and computer systems 3 3
YUPPIE yorktown ultra parallel polymorphic image engine 3 1
ESPRIT european strategic programme of research in information technology 3 3
DOCSIS data over cable system interface specification 3 2
EBCDIC extended binary coded decimal interchange code 3 1
BARWAN bay area research wireless access network 3 1
FMOODS formal methods for open object-based distributed systems 3 1
PCMCIA personal computer memory card international association 3 1
AHPCRC army high performance computing research center 3 1
MICCAI medical image computing and computer assisted intervention 2 1
TIPHON telecommunications and internet protocol harmonization over networks 2 1
PECASE presidential early career awards for scientists and engineers 2 2

A

A.5 Extracted Acronyms 293

Table A.27: Top 13 extracted acronyms of length seven
Acronym Full form t f d f
EMMCVPR energy minimization methods in computer vision and pattern recognition 7 3
WYSIWYG what you see is what you get 5 1
SHOSLIF self-organizing hierarchical optimal subspace learning and inference framework 2 1
YCAGWYS you can always get what you see 1 1
ESORICS european symposium on research in computer security 1 1
SIGCAPH special interest group for computers and the physically handicapped 1 1
IKIWISI i’ll know it when i see it 1 1
EMERALD event monitoring enabling responses to anomalous live disturbances 1 1
INSPASS immigration and naturalization service passenger accelerated service system 1 1
ICIMADE international conference on intelligent multimedia and distance education 1 1
ICANNGA int’l conf. artificial neural networks and genetic algorithms 1 1
WYSIWYR what you see is what you record 1 1
WYSIWYC what you see is what you compute 1 1

294 A Appendix

A.6 INEX Topics

A.6.1 CO Topics

Table A.28: CO Topics used at INEX 2005
ID Query

202 ontologies case study
203 code signing verification
204 moldovan semantic networks
205 marshall mcluhan
206 problems physical limits miniaturization microprocessor
207 DOM and SAX
208 "Artificial Intelligence" history
209 mining frequent pattern itemset sequence graph association
210 +multimedia "document models" "content authoring"
211 applications for mobile devices gps "global positioning system"
212 HMM "hidden Markov model" equation
213 Gibbs sampler
214 "adaptive learning" and "interactive learning" in education
215 Conference on Information and Knowledge Management CIKM
216 multimedia retrieval system architecture
217 user-centered design of web sites
218 computer assisted composing music notes MIDI
219 learning object granularity
220 image annotation ontology
221 capabilities limitations commercial speech recognition software
222 eletronic commerce business strategies
223 wireless ATM multimedia
224 incomplete information database
225 xml security
226 corba java
227 Adaboost Bagging "ensemble learning"
228 "IPv6 deployment" "IPv6 support"
229 "latent semantic anlysis" "latent semantic indexing"
230 +brain research +"differential geometry"
231 markov chains in graph related algorithms
232 Dempster Shafer theory Database experiment
233 Synthesizers for music creation
234 "call for papers" conference workshop +multimedia
235 "Central Intelligence Agency" "Federal Bureau of Investigation" personal privacy surveillance con-

cerns +Carnivore
236 machine translation approaches -programming
237 "Natural Language Processing" techniques "Artificial Intelligence" "Intelligent Information Retrieval"

+"Medical Informatics"
238 neural network algorithm for chess
239 quantum computation
240 Software quality control and measurement
241 Single sign on + LDAP

A

A.6 INEX Topics 295

A.6.2 COS Topics

Table A.29: COS Topics used at INEX 2005
ID Query

202 //article[about(., ontologies)]//sec[about(., ontologies case study)]
203 //sec[about(., code signing verification)]
204 //*[about(.//au, moldovan) and about(., "semantic networks")]
205 //bdy//*[about(., "Marshall McLuhan")]
207 //*[about(., "DOM and SAX")]
208 //article[about(., "Artificial Intelligence" history)]
210 //article//(abs|sec)[about(.,+multimedia "document models" "content authoring")]
211 //article//sec[about(.//p, applications mobile devices gps "global positioning system")]
212 //*[(about(., HMM equation) OR about(., "hidden Markov model" equation)) AND .//en > 0]
216 //sec[about(., multimedia retrieval system architecture) or about(.//fig, multimedia retrieval archi-

tecture)]
219 //sec[about(., learning object granularity)]
220 //article[about(., image retrieval)]//sec[about(., annotation ontology)]
222 //article[about(. , bussiness strategies)]//sec[about(. , eletronic commerce e-commerce)]
223 //article[about(.//sec, wireless ATM multimedia)]
224 //article[about(.//bb, Lipski)]//*[about(., incomplete information database)]
225 //*[about(.//p, xml security)]
226 //*[about(.//sec, corba java)]
228 //article[about(.//abs, IPv6)]//sec[about(., "IPv6 deployment") or about(., "IPv6 support")]
229 //article[about(.//bdy,"latent semantic analysis" "latent semantic indexing")]
230 //article//sec[about(.,brain research "differential geometry")]
231 //article//sec[about(.,+"markov chains" +algorithm +graphs)]
232 //article[about(.//abs, Dempster-Shafer theory)]//sec[about(., Dempster Shafer database experi-

ment)]
233 //article[about (.//bdy, synthesizers) and about (.//bdy, music)]
234 //article[about(.//atl,"upcoming events") OR about(.//atl,"call for papers")]//sec[about(., +multimedia

conference workshop)]
236 //article[about(., machine translation approaches -programming)]
238 //article[about(.//bdy, "artificial intelligence") and .//yr<=2000]//bdy[about(., chess) and about(.,

algorithm)]
239 //article[about(.//bdy//sec, quantum computation) and (.//yr=2000 or .//yr=2001) and

about(.//(atl|abs|kwd), - mechanics)]
240 //article[about(.//(abs|kwd),quality control measure)]//sec[about(.//p,software quality)]

296 A Appendix

A.6.3 CAS Topics

Table A.30: CAS Topics used at INEX 2005
ID Query

242 //article//sec[about(., web personalization approaches)]
243 //article//bb[about(., Schafer Anand Mulvenna Riecken)]
244 //article[about (.//fm, "query optimization")]//sec[about (., "join query optimization")]
245 //article//fm[about(., "query optimization")]
246 //article//sec[about (., "join query optimization")]
247 //article[about(.//abs,clustering) or about(.//tig,clustering)]//sec[about(.,evaluation measure)]
248 //article//abs[about(.,clustering)]
249 //article//tig[about(.,clustering)]
250 //article//sec[about(.//p, web retrieval) and about(.//p, link analysis)]
251 //article//sec//p[about(., web retrieval)]
252 //article//sec//p[about(., link analysis)]
253 //article[about(.//abs,evaluation "usability experiment" "digital libraries")]//sec[about(., evaluation

methodology measures "usability testing")]
254 //article//abs[about(.,evaluation "usability experiment" "digital libraries")]
255 //article//sec[about(., evaluation methodology measures "usability testing")]
256 //article[about(.//p,"data embedding")]//p[about(.,watermarking)]
257 //sec[about(.,free public licenses gnu Linux "open source")]
258 //article[about(.,intellectual property)]//sec[about(., copyright law)]
259 //article[about(.,intellectual property)]
260 //bdy//*[about(., model checking state space explosion)]
261 //article[about(., gesture recognition)]//sec[about(., application HMM "hidden Markov model")]
262 //article[about(., gesture recognition)]
263 //article//sec[about(., application HMM "hidden Markov model")]
264 //article[about(., "machine learning") AND about(.//sec, "mutual information criterion")]
265 //article[about(.//fm//atl, "digital libraries")]//sec[about(.,"information retrieval")]
266 //article//bdy[about (., thread implementation)]
267 //article//fm//atl[about(., "digital libraries")]
268 //article//sec[about(., "information retrieval")]
269 //article[about(.,interconnected networks)]//p[about(., Crossbar networks)]
270 //article//sec[about(., introduction information retrieval)]
271 //article//p[about(.,watermarking)]
272 //article//p[about(.,embedding data)]
273 //article//sec[about(., "frequent itemsets")]
274 //article//abs[about(., "data mining")]
275 //article[about(.//abs, "data mining")]//sec[about(., "frequent itemsets")]
276 //article//sec[about(.,evaluation measure)]
277 //article//bb[about(., Baeza-Yates)]
278 //sec[about(. , string matching)]
279 //sec[about(.,approximate algorithm)]
280 //article[about(.//bb, Baeza-Yates) and about(.//sec , string matching)]//sec[about(., approximate

algorithm)]
281 //article//sec[about(., copyright law)]
282 //article[about(., "machine learning")]
283 //article//sec[about(., "mutual information criterion")]
284 //article[about (.//bdy, thread implementation) and about (.//bdy, operating system)]
285 //article//bdy[about(., operating system)]
286 //article[about(.,interconnected networks)]
287 //article//p[about(., Crossbar networks)]
288 //article[about(.//bb, Schafer Anand Mulvenna Riecken)]//sec[about(., web personalization ap-

proaches)]

A

A.7 Evaluation Results - nxCG Performance of INEX Topics 297

A.7 Evaluation Results - nxCG Performance of INEX Topics

This chapter provides the complete set of performance figures of X-DOSE. Due to readability
and limited space, discussions in the evaluation chapter concentrated on the strict nxCG
metric. Here, the nxCG results of all three quantization functions, gen, strict, and genLifted,
are given.

A.7.1 Experiment I - Single-Term Index Performance

The colors in Figure A.1 refer to ST01 (blue), ST02 (purple), ST03 (green), ST04 (orange), and
ST05 (cyan).

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST01 ST02 ST03 ST04 ST05

(a) gen nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST01 ST02 ST03 ST04 ST05

(b) strict nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST01 ST02 ST03 ST04 ST05

(c) genLifted nxCG

Figure A.1: Tokenizer performance

The colors in Figure A.2 refer to ST03 (blue), ST07 (purple), and ST09 (green).

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST03 ST07 ST09

(a) gen nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST03 ST07 ST09

(b) strict nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST03 ST07 ST09

(c) genLifted nxCG

Figure A.2: Tagger performance

298 A Appendix

The colors in Figure A.3 refer to ST06 (blue), ST07 (purple), and ST09 (green).

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST06 ST07 ST09

(a) gen nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST06 ST07 ST09

(b) strict nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST06 ST07 ST09

(c) genLifted nxCG

Figure A.3: Extractor performance

The colors in Figure A.4 refer to ST07 (blue) and ST08 (purple).

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST07 ST08

(a) gen nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST07 ST08

(b) strict nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST07 ST08

(c) genLifted nxCG

Figure A.4: Stemmer performance

The colors in Figure A.5 refer to ST05 (blue), ST06 (purple), ST09 (green), ST10 (orange),
ST11 (cyan), and ST12 (red).

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST05 ST06 ST09 ST10 ST11 ST12

(a) gen nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST05 ST06 ST09 ST10 ST11 ST12

(b) strict nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST05 ST06 ST09 ST10 ST11 ST12

(c) genLifted nxCG

Figure A.5: Stopword filtering performance

A

A.7 Evaluation Results - nxCG Performance of INEX Topics 299

A.7.2 Experiment II - Multi-Term Index Performance

The colors in Figure A.6 refer to MT01 (blue), MT02 (purple), MT03 (green), MT04 (orange),
and MT (cyan).

0

0,02

0,04

0,06

0,08

0,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

MT01 MT02 MT03 MT04 MT

(a) gen nxCG

0

0,02

0,04

0,06

0,08

0,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

MT01 MT02 MT03 MT04 MT

(b) strict nxCG

0

0,02

0,04

0,06

0,08

0,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

MT01 MT02 MT03 MT04 MT

(c) genLifted nxCG

Figure A.6: Multi-term index performance

A.7.3 Experiment III - Combined Single-Term and Multi-Term Index Performance

The colors in Figure A.7 refer to ST09 (blue), MT (purple), and TOP (green).

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST09 MT TOP

(a) gen nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST09 MT TOP

(b) strict nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

ST09 MT TOP

(c) genLifted nxCG

Figure A.7: Combined single-term and multi-term index performance

300 A Appendix

A.7.4 Experiment IV - Content and Structure

The colors in Figure A.8 refer to CO.Thorough (blue) and CO.Focused (purple).

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Thorough CO.Focused

(a) gen nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Thorough CO.Focused

(b) strict nxCG

0

0,05

0,1

0,15

0,2

0,25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Thorough CO.Focused

(c) genLifted nxCG

Figure A.8: Performance of CO topics

The colors in Figure A.9 refer to COS.Thorough (blue) and COS.Focused (purple).

0

0,03

0,06

0,09

0,12

0,15

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough COS.Focused

(a) gen nxCG

0

0,03

0,06

0,09

0,12

0,15

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough COS.Focused

(b) strict nxCG

0

0,03

0,06

0,09

0,12

0,15

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough COS.Focused

(c) genLifted nxCG

Figure A.9: Performance of COS topics

The color in Figure A.10 refers to SSCAS (blue).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS

(a) gen nxCG

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS

(b) strict nxCG

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS

(c) genLifted nxCG

Figure A.10: Performance of SSCAS topics

A

A.7 Evaluation Results - nxCG Performance of INEX Topics 301

A.7.5 Experiment VI - The Effect of Content Importance ci

In the Figures A.11 to A.15, colors are used to decode different ci values of 0,0 (blue), 0,2
(purple), 0,5 (green), 0,8 (orange), and 1,0 (cyan).

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Thorough 0,0 CO.Thorough 0,2 CO.Thorough 0,5
CO.Thorough 0,8 CO.Thorough 1,0

(a) gen nxCG

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Thorough 0,0 CO.Thorough 0,2 CO.Thorough 0,5
CO.Thorough 0,8 CO.Thorough 1,0

(b) strict nxCG

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Thorough 0,0 CO.Thorough 0,2 CO.Thorough 0,5
CO.Thorough 0,8 CO.Thorough 1,0

(c) genLifted nxCG

Figure A.11: CO.Thorough performance of ci

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Focused 0,0 CO.Focused 0,2 CO.Focused 0,5
CO.Focused 0,8 CO.Focused 1,0

(a) gen nxCG

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Focused 0,0 CO.Focused 0,2 CO.Focused 0,5
CO.Focused 0,8 CO.Focused 1,0

(b) strict nxCG

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

CO.Focused 0,0 CO.Focused 0,2 CO.Focused 0,5
CO.Focused 0,8 CO.Focused 1,0

(c) genLifted nxCG

Figure A.12: CO.Focused performance of ci

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough 0,0 COS.Thorough 0,2 COS.Thorough 0,5
COS.Thorough 0,8 COS.Thorough 1,0

(a) gen nxCG

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough 0,0 COS.Thorough 0,2 COS.Thorough 0,5
COS.Thorough 0,8 COS.Thorough 1,0

(b) strict nxCG

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough 0,0 COS.Thorough 0,2 COS.Thorough 0,5
COS.Thorough 0,8 COS.Thorough 1,0

(c) genLifted nxCG

Figure A.13: COS.Thorough performance of ci

302 A Appendix

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Focused 0,0 COS.Focused 0,2 COS.Focused 0,5
COS.Focused 0,8 COS.Focused 1,0

(a) gen nxCG

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Focused 0,0 COS.Focused 0,2 COS.Focused 0,5
COS.Focused 0,8 COS.Focused 1,0

(b) strict nxCG

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Focused 0,0 COS.Focused 0,2 COS.Focused 0,5
COS.Focused 0,8 COS.Focused 1,0

(c) genLifted nxCG

Figure A.14: COS.Focused performance of ci

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS 0,0 SSCAS 0,2 SSCAS 0,5 SSCAS 0,8 SSCAS 1,0

(a) gen nxCG

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS 0,0 SSCAS 0,2 SSCAS 0,5 SSCAS 0,8 SSCAS 1,0

(b) strict nxCG

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS 0,0 SSCAS 0,2 SSCAS 0,5 SSCAS 0,8 SSCAS 1,0

(c) genLifted nxCG

Figure A.15: SSCAS performance of ci

A.7.6 Experiment VII - The Effect of the Generality Factor g f

In the Figures A.16 to A.18, colors are used to decode different g f values of 0,0 (blue), 0,2
(purple), 0,5 (green), 0,8 (orange), and 1,0 (cyan).

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough 0,0 COS.Thorough 0,2 COS.Thorough 0,5 COS.Thorough 0,8 COS.Thorough 1,0

(a) gen nxCG

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough 0,0 COS.Thorough 0,2 COS.Thorough 0,5 COS.Thorough 0,8 COS.Thorough 1,0

(b) strict nxCG

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Thorough 0,0 COS.Thorough 0,2 COS.Thorough 0,5 COS.Thorough 0,8 COS.Thorough 1,0

(c) genLifted nxCG

Figure A.16: COS.Thorough performance of g f

A

A.7 Evaluation Results - nxCG Performance of INEX Topics 303

0

0,05

0,1

0,15

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Focused 0,0 COS.Focused 0,2 COS.Focused 0,5 COS.Focused 0,8 COS.Focused 1,0

(a) gen nxCG

0

0,05

0,1

0,15

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Focused 0,0 COS.Focused 0,2 COS.Focused 0,5 COS.Focused 0,8 COS.Focused 1,0

(b) strict nxCG

0

0,05

0,1

0,15

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

COS.Focused 0,0 COS.Focused 0,2 COS.Focused 0,5 COS.Focused 0,8 COS.Focused 1,0

(c) genLifted nxCG

Figure A.17: COS.Focused performance of g f

0

0,2

0,4

0,6

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS 0,0 SSCAS 0,2 SSCAS 0,5 SSCAS 0,8 SSCAS 1,0

(a) gen nxCG

0

0,2

0,4

0,6

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

SSCAS 0,0 SSCAS 0,2 SSCAS 0,5 SSCAS 0,8 SSCAS 1,0

(b) strict nxCG

0

0,2

0,4

0,6

0,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n
SSCAS 0,0 SSCAS 0,2 SSCAS 0,5 SSCAS 0,8 SSCAS 1,0

(c) genLifted nxCG

Figure A.18: SSCAS performance of g f

A.7.7 Experiment VIII - INEX 2005 Comparison

In the Figures A.19 to A.23, colors are used to decode the performance of X-DOSE’09 (blue),
X-DOSE’05 (purple), and other INEX’05 systems.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

Other
syste
Other
syste

(a) gen nxCG

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

Other
syste

(b) strict nxCG

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(c) genLifted nxCG

Figure A.19: CO.Thorough performance at INEX 2005

304 A Appendix

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(a) gen nxCG

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(b) strict nxCG

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(c) genLifted nxCG

Figure A.20: CO.Focused performance at INEX 2005

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(a) gen nxCG

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(b) strict nxCG

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(c) genLifted nxCG

Figure A.21: COS.Thorough performance at INEX 2005

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(a) gen nxCG

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(b) strict nxCG

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(c) genLifted nxCG

Figure A.22: COS.Focused performance at INEX 2005

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(a) gen nxCG

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(b) strict nxCG

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Rank as %

no
rm

al
iz

ed
 c

um
ul

at
ed

 g
ai

n

X-DOSE 2009 X-DOSE 2005 Other System

(c) genLifted nxCG

Figure A.23: SSCAS performance at INEX 2005

Bibliography

[1] XML representation of a relational database. http://www.w3.org/XML/RDB.html, July
1997. (17)

[2] XML Linking Language (XLink) Version 1.0. http://www.w3.org/TR/xlink/, May 27
2001. (15)

[3] XML Pointer Language (XPointer). http://www.w3.org/TR/xptr/, August 16 2002. (15)

[4] Extensible Markup Language (XML). http://www.w3.org/XML, May 2006. (3, 14)

[5] Extensible Markup Language (XML) 1.0 (Third Edition). http://www.w3.org/TR/

REC-xml, May 2006. (3, 15)

[6] HyperText Markup Language (HTML) Home Page. http://www.w3.org/MarkUp, May
2006. (3)

[7] LaTeX – A document preparation system. http://www.latex-project.org, May 2006.
(3)

[8] PDF Reference. http://partners.adobe.com/public/developer/pdf/index_

reference.html, May 2006. (3)

[9] The Extensible Stylesheet Language Family (XSL). http://www.w3.org/Style/XSL, May
2006. (15)

[10] Word Reference Documentation. http://msdn.microsoft.com/office/

understanding/word/documentation/default.aspx, May 2006. (3)

[11] XML Schema. http://www.w3.org/XML/Schema, May 2006. (3, 15)

[12] SAX (Simple API for XML). http://sax.sourceforge.net, February 2008. (236)

[13] SAXON – The XSLT and XQuery Processor. http://saxon.sourceforge.net, October
2008. (236)

[14] Kjersti Aas and Line Eikvil. Text Categorisation: A Survey. Technical report, Norwegian
Computing Center, June 1999. (167)

305

http://www.w3.org/XML/RDB.html
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xptr/
http://www.w3.org/XML
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/MarkUp
http://www.latex-project.org
http://partners.adobe.com/public/developer/pdf/index_reference.html
http://partners.adobe.com/public/developer/pdf/index_reference.html
http://www.w3.org/Style/XSL
http://msdn.microsoft.com/office/understanding/word/documentation/default.aspx
http://msdn.microsoft.com/office/understanding/word/documentation/default.aspx
http://www.w3.org/XML/Schema
http://sax.sourceforge.net
http://saxon.sourceforge.net

306 Bibliography

[15] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L. Wiener.
The Lorel Query Language for Semistructured Data. International Journal on Digital
Libraries, 1(1):68–88, 1997. (52)

[16] Steven Abney. Corpus-Based Methods in Language and Speech, chapter Part-of-Speech
Tagging and Partial Parsing. Kluwer Academic Publishers, Dordrecht, 1996. (91, 92)

[17] Mohammad Abolhassani and Norbert Fuhr. Applying the Divergence From Random-
ness Approach for Content-Only Search in XML Documents. In Sharon McDonald
and John Tait, editors, Proceedings of the 26th European Conference on Information Retrieval
Research (ECIR), volume 2997 of Lecture Notes in Computer Science, Sunderland, UK, April
4–7 2004. University of Sunderland, Springer Verlag. (27, 206)

[18] Mohammad Abolhassani, Norbert Fuhr, Norbert Gövert, and Kai Großjohann. HyREX:
Hypermedia Retrieval Engine for XML. Technical report, University of Dortmund,
Department of Computer Science, Dortmund, Germany, 2002. (205)

[19] James F. Allen. Natural Language Understanding. The Benjamin/Cummings Publishing
Company, Inc., Redwood City, CA, USA, second edition, 1994. (92)

[20] Ofer Arazy and Carson Woo. Enhancing Information Retrieval through Statistical
Natural Language Processing: A Study of Collocation Indexing. Management Information
Systems Quarterly (MIS), 31(Issue 3):525–546, September 3 2007. (127)

[21] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, ACM Press, New York, Essex, England, 1999. (1, 8, 12, 13, 21, 27, 38, 58, 73, 76,
79, 80, 81, 94, 95, 98, 112, 171, 183)

[22] Peter Bailey and David Hawking. A Parallel Architecture For Query Processing over
a Terabyte of Text. Technical Report TR-CS-96-04, Department of Computer Science,
Australian National University, Canberra 0200 ACT, Australia, 1996. (210)

[23] Francois Bancilhon, Gilles Barbedette, Véronique Benzaken, Claude Delobel, Sophie
Gamerman, Christophe Lécluse, Patrick Pfeffer, Philippe Richard, and Fernando Velez.
The Design and Implementation of O2, an Object-Oriented Database System. pages
1–22, New York, NY, USA, 1988. Springer-Verlag New York, Inc. (53)

[24] Francisco-Mario Barcala, Jesús Vilares Ferro, Miguel A. Alonso, Jorge Graña, and
Manuel Vilares. Tokenization and Proper Noun Recognition for Information Retrieval.
In A. Min Tjoa and Roland R. Wagner, editors, Proceedings of the 13th International
Workshop on Database and Expert Systems Applications (DEXA), pages 246–250, Washington,
DC, USA, September 2-6 2002. IEEE, IEEE Computer Society Press. (80)

307

[25] David T. Barnard, Gwen Clarke, and Nicholas Duncan. Tree-to-Tree Correction for
Document Trees. Technical Report 95-372, Department of Computing and Information
Science, Queen’s University, 1995. (151, 159, 173)

[26] Philip Bille. A Survey on Tree Edit Distance and Related Problems. Theoretical Computer
Science, 337(1-3):217–239, 2005. (153)

[27] Patrick Billingsley. Probability and Measure. Wiley Series in Probability and Mathematical
Statistics. John Wiley and Sons, Inc., 1979. (27, 206)

[28] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Robie, and
Jérôme Siméon. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery,
January 23 2007. (31)

[29] Angela Bonifati and Stefano Ceri. Comparative Analysis of Five XML Query Languages.
SIGMOD Record, 29(1):68–79, 2000. (31)

[30] Abdelhamid Bouchachia and Marcus Hassler. Classification of XML Documents. In IEEE
Symposium Series on Computational Intelligence (SSCI), Computational Intelligence and Data
Mining (CIDM), pages 390–396. Honolulu, Hawaii, United States, IEEE Computational
Intelligence Society, April 1-5 2007. (147)

[31] Thorsten Brants. TnT – A Statistical Part-Of-Speech Tagger. In Proceedings of the 6th
Applied Natural Language Processing Conference (ANLP), April 29 – May 3 2000. (69, 92)

[32] Thorsten Brants. Natural Language Processing in Information Retrieval. In Proceedings
of the 14th Meeting of Computational Linguistics in the Netherlands (CLIN), pages 1–13,
Antwerp, The Netherlands, December 19 2003. (63)

[33] Andrej Bratko and Bogdan Filipic̈. Exploiting Structural Information in Semi-Structured
Document Classification. In Proceedings of the 13th International Electrotechnical and
Computer Science Conference (ERK), 2004. (150)

[34] Eric Brill. A Simple Rule-based Part of Speech Tagger. In Proceedings of the 3rd
Conference on Applied Natural Language Processing (ANLP), pages 152–155, Morristown,
NJ, USA, 1992. Laboratory for Computer Science, Massachusetts Institute of Technology,
Association for Computational Linguistics. (67, 92)

[35] Eric Brill. A Corpus-Based Approach to Language Learning. PhD thesis, University of
Pennsylvania, Philadelpha, PA, USA, December 1 1993. (67)

[36] Eric Brill. Some Advances in Transformation-Based Part of Speech Tagging. In Pro-
ceedings of the 12th National Conference on Artificial Intelligence (AAAI), volume 1, pages

http://www.w3.org/TR/xquery

308 Bibliography

722–727, Menlo Park, CA, USA, 1994. Laboratory for Computer Science, Massachusetts
Institute of Technology, American Association for Artificial Intelligence. (67, 92)

[37] Eric Brill. Transformation-Based Error-Driven Learning and Natural Language Process-
ing: A Case Study in Part-of-Speech Tagging. Computational Linguistics, 21(4):543–565,
1995. (67)

[38] Eric Brill. Unsupervised Learning of Disambiguation Rules for Part of Speech Tagging.
In David Yarovsky and Kenneth Church, editors, Proceedings of the 3rd Workshop on
Very Large Corpora (WVLC), pages 1–13, Somerset, New Jersey, 1995. Association for
Computational Linguistics. (67)

[39] Eric Brill. Part-Of-Speech Tagging, pages 403–414. Volume 1 of Dale et al. [61], 2000. (91)

[40] Horst Bunke and Abraham Kandel. Mean and Maximum Common Subgraph of Two
Graphs. Pattern Recognigion Letters, 21(2):163–168, 2000. (151)

[41] Forbes J. Burkowski. Retrieval Activities in a Database Consisting of Heterogeneous
Collections of Structured Text. In Nicholas J. Belkin, Peter Ingwersen, and Annelise Mark
Pejtersen, editors, Proceedings of the 15th ACM SIGIR International Conference on Research
and Development in Information Retrieval, pages 112–125, New York, NY, USA, June 1992.
ACM. (13, 18)

[42] James P. Callan. Passage-Level Evidence in Document Retrieval. In W. Bruce Croft and
C. J. van Rijsbergen, editors, Proceedings of the 17th ACM SIGIR International Conference
on Research and Development in Information Retrieval, pages 302–310, Dublin, Ireland, July
1994. Springer-Verlag New York, Inc. (18)

[43] Laurent Candillier, Isabelle Tellier, and Fabien Torre. Transforming XML Trees for
Efficient Classification and Clustering. In Fuhr et al. [90], pages 469–480. (151, 152, 172,
177)

[44] David Carmel, Einat Amitay, Miki Herscovici, Yoëlle Maarek, Yael Petruschka, and Aya
Soffer. Juru at TREC 10 – Experiments with Index Pruning. In Proceedings of the 10th
NIST Text Retrieval Conference (TREC), pages 228–237, Haifa 31905, Israel, November
2001. Haifa IBM Labs. (26, 208)

[45] David Carmel, Nadav Efrati, Gad M. Landau, Yoelle S. Maarek, and Yosi Mass. An
Extension of the Vector Space Model for Querying XML Documents via XML Fragments.
In Ricardo Baeza-Yates, Norbert Fuhr, and Yoelle S. Maarek, editors, Proceedings of the
SIGIR 2002 Workshop on XML and Information Retrieval, 15. August 2002. (208)

309

[46] Kai-Uwe Carstensen, Christian Ebert, Cornelia Endriss, Susanne Jekat, Ralf Klabunde,
and Hagen Langer, editors. Computerlinguistik und Sprachtechnologie – Eine Einführung.
Elsevier GmbH, Spektrum Akademischer Verlag, second edition, 2004. (91, 93)

[47] Sudarshan S. Chawathe. Comparing Hierarchical Data in External Memory. In Proceed-
ings of the 25th International Conference on Very Large Data Bases (VLDB), pages 90–101,
1999. (151, 152, 177)

[48] Sudarshan S. Chawathe and Hector Garcia-Molina. Meaningful Change Detection in
Structured Data. In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, pages 26–37, 1997. (151, 152)

[49] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
Change Detection in Hierarchically Structured Information. In Proceedings of the ACM
SIGMOD International Conference on the Management of Data, pages 493–504, 1996. (151,
152, 153, 177)

[50] Yves Chiaramella. Information Retrieval and Structured Documents. Lecture Notes on
Computer Science (LNCS), 1980:286–309, 2001. (18, 19)

[51] Yves Chiaramella, Philippe Mulhem, and Franck Fourel. A Model for Multimedia
Information Retrieval. Technical Report FERMI ESPRIT BRA 8134, University of
Glasgow, July 4 1996. (33, 205)

[52] Heting Chu. Information Representation and Retrieval in the Digital Age. Thomas H. Hogan,
Sr. for the American Society for Information Science and Technology, second edition,
2005. (94)

[53] James Clark and Steve DeRose. XML Path Language (XPath). http://www.w3.org/TR/
xpath, November 1999. (15, 31)

[54] Grégory Cobéna, Serge Abiteboul, and Amélie Marian. Detecting Changes in XML
Documents. In Proceedings of the 18th International Conference on Data Engineering (ICDE),
San Jose, CA, 2002. (151, 152)

[55] Ronald Cole, Joseph Mariani, Hans Uszkoreit, Giovanni Battista Varile, Annie Zaenen,
and Antonio Zampolli, editors. Survey of the State of the Art in Human Language Technology.
Cambridge University Press and Giardini, Center for Spoken Language Understanding
CSLU, Carnegie Mellon University, Pittsburgh, PA., web edition edition, 1997. (30)

[56] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. Perfomance
Evaluation of the VF Graph Matching Algorithm. In Proceedings of the 10th Interna-

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

310 Bibliography

tionall Conference on Image Analysis and Processing (ICIAP), volume 2, pages 1172–1177,
Washington, DC, USA, 1999. IEEE Computer Society. (151)

[57] Gianni Costa, Giuseppe Manco, Riccardo Ortale, and Andrea Tagarelli. A Tree-Based
Approach to Clustering XML Documents by Structure. In Jean-Francois Boulicaut,
Dino Pedreschi, Floriana Esposito, and Fosca Giannottl, editors, Knowledge Discovery in
Databases: Proceeding of the 8th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD), volume 3202, pages 137–148, Pisa, Italy, September 20-24
2004. Springer Lecture Notes in Computer Science (LNCS). (176)

[58] W. Bruce Croft and Jinxi Xu. Corpus-Specific Stemming using Word Form Co-occurence.
In Proceedings of the 4th Symposium on Document Analysis and Information Retrieval, pages
147–159, Las Vegas, Nevada, April 1995. (72, 110)

[59] Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A Practical Part-of-
Speech Tagger. In Proceedings of the 3rd Conference on Applied Natural Language Processing
(ANLP), pages 133–140, Morristown, NJ, USA, 1992. Association for Computational
Linguistics. (68)

[60] Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel, and Timos Sellis. A Methodology
for Clustering XML Documents by Structure. Information Systems, 31(3):187–228, 2006.
(152, 177)

[61] Robert Dale, Hermann Moisl, and Harold Somers, editors. Handbook of Natural Language
Processing, volume 1. Marcel Dekker, Inc., 2000. (308, 322)

[62] John L. Dawson. Suffix Removal and Word Conflation. ALLC Bulletin, 2(3):33–46, 1974.
(70)

[63] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete
Data via de EM Algorithm. The Journal of Royal Statistical Society, 39:1–38, 1977. (20)

[64] Ludovic Denoyer and Patrick Gallinari. Bayesian Network Model for Semi-Structured
Document Classification. Information Processing and Management, Pergamon Press, Inc.,
Tarrytown, NY, USA, 40(5):807–827, 2004. (149, 150)

[65] Ludovic Denoyer, Patrick Gallinari, and Anna-Marie Vercoustre. XML Mining Challenge
at INEX 2005. Technical report, University of Paris VI, INRIA, 2006. (167, 194)

[66] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. XML-QL:
A Query Language for XML. http://www.w3.org/TR/NOTE-xml-ql/, August 19 1998.
(31)

http://www.w3.org/TR/NOTE-xml-ql/

311

[67] Alin Deutsch, Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, David Maier, and
Dan Suciu. Querying XML Data. IEEE Data Engineering Bulletin, 22(3):10–18, 1999. (31)

[68] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley
and Sons, Inc., second edition, 2001. (164)

[69] Christos Faloutsos and Douglas W. Oard. A Survey of Information Retrieval and
Filtering Methods. Technical Report CS-TR-3514, University of Maryland at College
Park, College Park, MD, USA, 1995. (175)

[70] Mary Fernández, Daniela Florescu, Jaewoo Kang, Alon Levy, and Dan Suciu. Catching
the Boat with Strudel: Experiences with a Web-site Management System. In Proceedings
of the 1998 ACM International Conference on Management of Data (SIGMOD), pages 414–425,
New York, NY, USA, 1998. ACM. (52)

[71] Sergio Flesca, Giuseppe Manco, Elio Masciari, and Luigi Pontieri. Fast Detection of XML
Structural Similarity. IEEE Transactions on Knowledge and Data Engineering, 17(2):160–175,
2005. (151, 177)

[72] Günther Fliedl. Natürlichkeitstheoretische Morphosyntax – Aspekte der Theorie und Imple-
mentierung. Gunter Narr Verlag (GNV), Dischingerweg 5, D-72070 Tübingen, 1999.
(104)

[73] Daniela Florescu and Donald Kossmann. A Performance Evaluation of Alternative
Mapping Schemes for Storing XML Data in a Relational Database. Technical report,
May 1999. (43, 45, 55)

[74] Richard Foster. Document Clustering in Large German Corpora Using Natural Language
Processing. PhD thesis, University of Zurich, 2006. (195)

[75] Christopher Fox. Information Retrieval: Data Structures and Algorithms, chapter Lexical
Analysis and Stoplists, pages 102–130. Prentice-Hall, Inc., 1992. (64, 65, 80, 93)

[76] Christopher Fox. A Stop List for General Text. SIGIR Forum, 24(1-2):19–21, r 90. (69, 70,
93, 98, 108)

[77] William Bill Frakes and Ricardo A. Baeza-Yates. Information Retrieval: Data Structures
and Algorithms. Prentice Hall, Englewood Cliffs, NJ, USA, 1992. (80)

[78] Francesco De Francesca, Gianluca Gordano, Riccardo Ortale, and Andrea Tagarelli.
Distance-Based Clustering of XML Documents. In Luc De Raedt and Takashi Washio,
editors, Proceedings of the 1st International Workshop on Mining Graphs, Trees and Sequences
(MGTS), pages 75–78. ECML/PKDD’03 Workshop Proceedings, September 2003. (178)

312 Bibliography

[79] Norbert Fuhr and Norbert Gövert. Index Compression vs. Retrieval Time of Inverted
Files for XML Documents. In Proceedings of the 11th International Conference on Information
and Knowledge Management (CIKM), pages 662–664, New York, NY, USA, 2002. ACM
Press. (24, 207)

[80] Norbert Fuhr and Norbert Gövert. Index Compression vs. Retrieval Time of Inverted
Files for XML Documents. Technical report, University of Dortmund, 2002. (24, 207)

[81] Norbert Fuhr, Norbert Gövert, and Kai Großjohann. HyREX: Hyper-Media Retrieval
Engine for XML. In Kalervo Järvelin, Micheline Beaulieu, Ricardo Baeza-Yates, and
Sung Hyon Myaeng, editors, Proceedings of the 25th ACM SIGIR International Conference
on Research and Development in Information Retrieval, page 449, New York, NY, USA, 2002.
ACM. (33, 205)

[82] Norbert Fuhr, Norbert Gövert, Gabriella Kazai, and Mounia Lalmas, editors. Advances
in XML Information Retrieval and Evaluation, Proceedings of the 1st International Workshop
of the Initiative for the Evaluation of XML Retrieval (INEX), ERCIM Workshop Proceedings,
Sophia Antipolis, France, December 9–11 2002. ERCIM. (8, 35, 314, 316, 317, 319, 320,
321, 322, 323, 326, 327)

[83] Norbert Fuhr, Norbert Gövert, and Thomas Rölleke. DOLORES: A System for Logic-
Based Retrieval of Multimedia Objects. In Proceedings of the 21st ACM SIGIR International
Conference on Research and Development in Information Retrieval, pages 257–265, New York,
NY, USA, 1998. ACM Press. (19, 27)

[84] Norbert Fuhr and Kai Großjohann. XIRQL – An Extension of XQL for Information
Retrieval. In Ricardo Baeza-Yates, Norbert Fuhr, Ron Sacks-Davis, and Ross Wilkinson,
editors, Proceedings of the SIGIR 2000 Workshop on XML and Information Retrieval, Athens,
Greece, July 28, 2000 2000. ACM. (23, 31)

[85] Norbert Fuhr and Kai Großjohann. XIRQL: A Query Language for Information Retrieval
in XML Documents. In Kraft et al. [157], pages 172–180. (xix, 15, 23, 24, 26, 42, 206)

[86] Norbert Fuhr and Kai Großjohann. XIRQL: An XML Query Language Based on
Information Retrieval Concepts. ACM Transactions on Information Systems, 22(2):313–356,
2004. (13, 23, 28, 31, 33, 205)

[87] Norbert Fuhr, Kai Großjohann, and Sasha Kriewel. A Query Language and User Interface
for XML Information Retrieval, volume 2818 of Lecture Notes in Computer Science, pages
59–75. Springer, Heidelberg, 2003. (23, 31, 33, 34, 205, 206)

313

[88] Norbert Fuhr and Mounia Lalmas, editors. Advances in XML Information Retrieval and
Evaluation, Proceedings of the 5th International Workshop of the Initiative for the Evaluation
of XML Retrieval (INEX), ERCIM Workshop Proceedings, Sophia Antipolis, France,
December 17–19 2006. ERCIM Springer LNCS. (35)

[89] Norbert Fuhr, Mounia Lalmas, and Saadia Malik, editors. Advances in XML Information
Retrieval and Evaluation, Proceedings of the 2nd International Workshop of the INitiative for
the Evaluation of XML Retrieval (INEX), ERCIM Workshop Proceedings, Sophia Antipolis,
France, December 15–17 2003. ERCIM Springer LNCS. (35, 313, 321, 322)

[90] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Gabriella Kazai, editors. Advances in
XML Information Retrieval and Evaluation, Proceedings of the 4th International Workshop of
the Initiative for the Evaluation of XML Retrieval (INEX), volume 3977 of ERCIM Workshop
Proceedings, Sophia Antipolis, France, November 28–30 2005. Dagstuhl Castle, Germany,
ERCIM Springer Lecture Notes in Computer Science (LNCS), Springer-Verlag GmbH.
(10, 35, 167, 194, 308, 316, 319, 320, 322, 327)

[91] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Gabriella Zoltan Szlavik, editors.
Advances in XML Information Retrieval and Evaluation, Proceedings of the 3rd International
Workshop of the Initiative for the Evaluation of XML Retrieval (INEX), volume 3493 of
ERCIM Workshop Proceedings, Sophia Antipolis, France, December 06–08 2004. ERCIM
Springer LNCS. (35, 321, 326)

[92] Norbert Fuhr, Mounia Lalmas, and Andrew Trotman, editors. Advances in XML Informa-
tion Retrieval and Evaluation, Proceedings of the 6th International Workshop of the Initiative for
the Evaluation of XML Retrieval (INEX), ERCIM Workshop Proceedings, Sophia Antipolis,
France, December 17–19 2007. ERCIM Springer LNCS. (35)

[93] Norbert Fuhr, Saadia Malik, and Mounia Lalmas. Overview of the INitiative for the
Evaluation of XML Retrieval (INEX) 2003. In Fuhr et al. [89], pages 1–18. (36, 38)

[94] Norbert Fuhr and Thomas Rölleke. A Probabilistic Relational Algebra for the Integration
of Information Retrieval and Database Systems. ACM Transactions on Information Systems,
15(1):32–66, 1997. (206)

[95] Norbert Fuhr and Thomas Rölleke. HySpirit – A Probabilistic Inference Engine for
Hypermedia Retrieval in Large Databases. In Proceedings of the 6th International Conference
on Extending Database Technology (EDBT), pages 24–38, Heidelberg et al., 1998. Springer.
(207)

[96] Shlomo Geva, Marcus Hassler, and Xavier Tannier. XOR – XML Oriented Retrieval
Language. In Andrew Trotman and Shlomo Geva, editors, Proceedings of the ACM SIGIR

314 Bibliography

Workshop on XML Element Retrieval Methodology, pages 5–12, Seattle, WA, USA, August
10 2006. ACM Press, New York City, NY, USA. (7, 23)

[97] Joydeep Ghosh. The Handbook of Data Mining, chapter Scalable Clustering, pages 247–277.
Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 2003. (176, 192, 193)

[98] Emmanuel Giguet. The Stakes of Multilinguality: Multilingual Text Tokenization in
Natural Language Diagnosis. In Proceedings of the 4th Pacific Rim International Conference
on Artificial Intelligence Workshop Future issues for Multilingual Text Processing, Cairns,
Australia, August 27 1996. (66, 80)

[99] Kevin Glass and Shaun Bangay. Evaluating Parts-Of-Speech Taggers for Use in a
Text-to-Scene Conversion System. In Proceedings of the 2005 Research Conference of the
South African Institute of Computer Scientists and Information Technologists on IT Research in
Developing Countries (SAICSIT), pages 20–28, Republic of South Africa, September 2005.
South African Institute for Computer Scientists and Information Technologists. (92)

[100] Marco Gori, Marco Maggini, and Lorenzo Sarti. Exact and Approximate Graph Match-
ing Using Random Walks. IEEE Transaction on Pattern Analysis and Machine Intelligence,
27(7):1100–1111, 2005. (151)

[101] Norbert Gövert. Bilingual Information Retrieval with HyREX and Internet Translation
Services. In Carol Peters, editor, Workshop on Cross-Language Information Retrieval and
Evaluation, volume 2069 of LNCS, pages 237–244, Heidelberg, 2001. Springer-Verlag,
Lecture Notes in Computer Science. (43, 51, 206)

[102] Norbert Gövert, Norbert Fuhr, Mohammad Abolhassani, and Kai Großjohann. Content-
Oriented XML Retrieval with HyREX. In Fuhr et al. [82], pages 26–32. (205)

[103] Norbert Gövert and Gabriella Kazai. Overview of the INitiative for the Evaluation of
XML Retrieval (INEX) 2002. In Fuhr et al. [82], pages 1–17. (36, 38, 39)

[104] Torsten Grabs, Klemens Böhm, and Hans-Jörg Schek. XMLTM: Efficient Transaction
Management for XML Documents. In Proceedings of the 11th International Conference on
Information and Knowledge Management (CIKM), pages 142–152, New York, NY, USA,
2002. ACM. (52)

[105] Torsten Grabs and Hans-Jörg Schek. ETH Zürich at INEX: Flexible Information Retrieval
from XML with PowerDB-XML. In Fuhr et al. [82], pages 141–148. (21)

[106] Torsten Grabs and Hans-Jörg Schek. Generating Vector Spaces On-the-Fly for Flexible
XML Retrieval. In Proceedings of the XML and Information Retrieval Workshop - 25th Annual

315

International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 4–13, Tampere, Finland, August 2002. ACM Press. (21, 27, 57)

[107] Gregory Grefenstette and Pasi Tapanainen. What is a word, What is a Sentence? Prob-
lems of Tokenization. In Proceedings of the 3rd Conference on Computational Lexicography
and Text Research (COMPLEX), pages 79–87. Xerox Research Centre Europe, MLTT, 1994.
(65, 78, 80, 81, 126)

[108] Kai Grosjohann, Norbert Fuhr, Daniel Effing, and Sasha Kriewel. Query Formulation
and Result Visualization for XML Retrieval. In Proceedings of the ACM SIGIR Workshop
on XML and Information Retrieval. ACM, 2002. (33, 206)

[109] Kai Großjohann, Norbert Fuhr, Daniel Effing, and Sasha Kriewel. A User Interface
for XML Document Retrieval. In Informatik bewegt: Informatik 2002 - 32. Jahrestagung
der Gesellschaft für Informatik e.v. (GI), Informatik 2002, pages 166–170. Springer GI,
Heidelberg, 2002. (33, 34, 206)

[110] David A. Grossman and Ophir Frieder. Information Retrieval - Algorithms and Heuristics.
Springer, second edition, 2004. (19, 94, 99, 110)

[111] David A. Grossman, Ophir Frieder, David O. Holmes, and David C. Roberts. Integrating
Structured Data and Text: A Relational Approach. J. Am. Soc. Inf. Sci., 48(2):122–132,
1997. (53)

[112] Torsten Grust. Accelerating XPath Location Steps. In Proceedings of the 2002 ACM
International Conference on Management of Data (SIGMOD), pages 109–120. ACM Press,
2002. (44, 45, 53, 55)

[113] Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and Ting Yu. Approxi-
mate XML Joins. In Proceedings of the 2002 ACM International Conference on Management
of Data (SIGMOD), pages 287–298, New York, NY, USA, 2002. ACM Press. (152)

[114] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A Robust Clustering
Algorithm for Categorical Attributes. In Proceedings of the 15th International Conference on
Data Engineering (ICDE), pages 512–521, Washington, DC, USA, 1999. IEEE Computer
Society. (177)

[115] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A Robust Clustering
Algorithm for Categorical Attributes. Information Systems, 25(5):345–366, 2000. (177)

[116] Jin Guo. Critical Tokenization and its Properties. Computational Linguistics, 23(4):569–596,
1997. (66, 74, 80, 83)

316 Bibliography

[117] Jin Guo. One Tokenization Per Source. In Christian Boitet and Pete Whitelock, editors,
Proceedings of the 36th Meeting of the Association for Computational Linguistics and 17th In-
ternational Conference on Computational Linguistics, volume 1, pages 457–463, Morristown,
NJ, USA, 1998. Association for Computational Linguistics. (66, 74, 80, 83)

[118] Markus Hagenbuchner, Alessandro Sperduti, Ah Chung Tsoi, Francesca Trentini, Franco
Scarselli, and Marco Gori. Clustering XML Documents Using Self-Organizing Maps for
Structures. In Fuhr et al. [90], pages 481–496. (172)

[119] David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of Data Mining. MIT
Press, Cambridge, MA, USA, 2001. (1)

[120] Marcus Hassler and Abdelhamid Bouchachia. Searching XML Documents – Preliminary
Work. In Fuhr et al. [90], pages 119–133. (41, 260)

[121] Marcus Hassler, Abdelhamid Bouchachia, and Roland Mittermeir. Classification of
XML Documents. International Journal of Information Technology and Intelligent Computing
(Int. J. IT&IC), 2(4):26, November 2007. (147)

[122] Marcus Hassler and Günther Fliedl. Text Preparation through Extended Tokenization.
In Alessandro Zanasi, Carlos A. Brebbia, and Nelson F.F. Ebecken, editors, Data Mining
VII: Data, Text and Web Mining and their Business Applications, volume 37, pages 13–21.
Prague, Czech Republic, WIT Press, Wessex Institute of Technology, July 11-13 2006.
(63, 81)

[123] Marcus Hassler, Christian Hofbauer, and Günther Fliedl. The Klagenfurt Computer
Linguistic Resource Portal. http://clr.uni-klu.ac.at, September 2006. (89)

[124] Marcus Hassler and Franz Kollmann. Secure Management of Structured Documents.
In Veljko Milutinovic, editor, Proceedings of the International Conference on Advances in the
Internet, Processing, Systems, and Interdisciplinary Research (IPSI), page 18. IPSI Belgrade,
Academic Mind, November 10–13 2005. (41)

[125] Kenji Hatano, Hiroko Kinutani, Masahiro Watanabe, Masatoshi Yoshikawa, and Shun-
suke Uemura. Determining the Unit of Retrieval Results for XML Documents. In Fuhr
et al. [82], pages 57–64. (22, 25)

[126] David Hawking. PADRE – A Parallel Document Retrieval Engine. In Proceedings of the
3rd Fujitsu Parallel Computing Workshop, Kawasaki, Japan, November 1994. (210)

[127] David Hawking. The Design and Implementation of a Parallel Document Retrieval
Engine. Technical Report TR-CS-95-08, Department of Computer Science, Australian
National University, 1995. (210)

http://clr.uni-klu.ac.at

317

[128] David Hawking. Document Retrieval in OCR-Scanned Text. In Proceedings of the 6th
Parallel Computing Workshop, pages P2–F, Kawasaki, Japan, November 1996. paper P2-F.
(210)

[129] David Hawking. PADRE for COWs. In Paul Mackerras, editor, Proceedings of the
7th Parallel Computing Workshop, Canberra, Australia, September 1997. Department of
Computer Science, ANU. (210)

[130] David Hawking. Scalable Text Retrieval for Large Digital Libraries. In Proceedings of the
1st European Conference on Research and Advanced Technology for Digital Libraries, pages
127–145. Springer-Verlag, 1997. (210)

[131] David Hawking and Peter Bailey. PADRE v. 2.4 User Manual. Department of Computer
Science, Australian National University, August 28 1996. (210)

[132] David Hawking, Peter Bailey, and David Campbell. A Parallel Document Retrieval
Server for the World Wide Web. In Proceedings of the Australian Document Computing
Symposium, pages 73–78, Melbourne, Australia, March 1996. (210)

[133] David Hawking, Peter Bailey, David Campbell, Paul B. Thistlewaite, and Andrew
Tridgell. A PADRE in MUFTI (A Multi User Free Text retrieval Intermediary). In
Proceedings of the 4th Parallel Computing Workshop, pages 75–84, London, England,
September 1995. (210)

[134] David Hawking, Peter Bailey, and Nick Craswell. Efficient and Flexible Search Using
Text and Metadata. Technical report, CSIRO Mathematical and Information Sciences,
May 2000. (210)

[135] David Hawking, Paul Thistlewaite, and Peter Bailey. ANU/ACSys TREC-5 Experiments.
In D. K. Harman, editor, Proceedings of the 5th International Text Retrieval Conference
(TREC), pages 275–290, Gaithersburg, MD, February 1 1997. U.S. National Institute of
Standards and Technology. (210)

[136] David Hawking and Paul B. Thistlewaite. Searching for Meaning with the Help of
a PADRE. In D. K. Harmann, editor, Proceedings of the 3rd International Text Retrieval
Conference (TREC), pages 257–267, Gaithersburg, MD, November 1994. (210)

[137] Djoerd Hiemstra. A Database Approach to Content-Based XML Retrieval. In Fuhr et al.
[82], pages 111–118. (45, 53)

[138] Adel Hlaoui and Shengrui Wang. A New Algorithm for Inexact Graph Matching. In
Proceedings of the 16th International Conference on Pattern Recognition (ICPR), volume 4,
2002. (151)

318 Bibliography

[139] Adel Hlaoui and Shengrui Wang. A New Median Graph Algorithm. In Edwin R.
Hancock and Mario Vento, editors, Proceedings of the 4th IAPR International Workshop on
Graph Based Representations in Pattern Recognition (GbRPR), volume 2726 of Lecture Notes
in Computer Science, pages 225–234, York, UK, June 30 - July 2 2003. Springer. (151)

[140] Xiuzhen Huang and Jing Lai. Maximum Common Subgraph: Upper Bound and Lower
Bound Results. First International Multi-Symposium of Computer and Computational Sciences
(IMSCCS), 1:40–47, 2006. (151)

[141] Peter Jackson and Isabelle Moulinier. Natural Language Processing for Online Applica-
tions: Text Retrieval, Extraction and Categorisation. John Benjamins Publishing Company,
Amsterdam, Netherlands, Wolverhampton, United Kingdom, 2002. (73, 80, 81)

[142] Hosagrahar V. Jagadish, Shurug A. Al-Khalifa, Adriane Chapman, Laks V. S. Laksh-
manan, Andrew Nierman, Stylianos Paparizos, Jaqdish Himatlal Patel, Divesh Sri-
vastava, Nuwee Wiwatwattana, Yuqing Wu, and Cong Yu. TIMBER: A Native XML
Database. The VLDB Journal, 11(4):274–291, April 2002. (53)

[143] Kalervo Järvelin and Jaana Kekäläinen. Cumulated Gain-Based Evaluation of IR Tech-
niques. ACM Transactions on Information Systems, 20(4):2002, 2002. (239)

[144] Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of Trees – An Alternative
to Tree Edit. In Journal on Theoretical Computer Science, volume 143, pages 137–148, 1995.
(153)

[145] Jaap Kamps, Maarten de Rijke, and Börkur Sigurbjörnsson. Length Normalization in
XML Retrieval. In Proceedings of the 27th ACM SIGIR International Conference on Research
and Development in Information Retrieval, pages 80–87, New York, NY, USA, 2004. ACM
Press. (19)

[146] Jaap Kamps, Maarten Marx, Maarten de Rijke, and Börkur Sigurbjörnsson. XML
Retrieval: What to Retrieve? In Proceedings of the 26th ACM SIGIR International Conference
on Research and Development in Informaion Retrieval, pages 409–410, New York, NY, USA,
2003. ACM. (29)

[147] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A Local Search Approximation Algorithm for k-Means
Clustering. In Proceedings of the 18th ACM Symposium on Computational Geometry (SCG),
pages 10–18, New York, NY, USA, 2002. ACM Press. (176, 192)

[148] Marcin Kaszkiel and Justin Zobel. Passage Retrieval Revisited. In Proceedings of the 20th
ACM SIGIR International Conference on Research and Development in Information Retrieval,
pages 178–185, Philadelphia, July 1997. ACM Press. (13, 18)

319

[149] Gabriella Kazai and Mounia Lalmas. INEX 2005 Evaluation Measures. In Fuhr et al.
[90], pages 16–29. (239, 241)

[150] Gabriella Kazai and Mounia Lalmas. Notes on What to Measure in INEX. In Andrew
Trotman, Mounia Lalmas, and Norbert Fuhr, editors, Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, Second Edition, pages 22–38. University of
Glasgow, Glasgow, Scotland, July 30 2005. (39)

[151] Gabriella Kazai, Mounia Lalmas, and Thomas Rölleke. Focussed Structured Document
Retrieval. In Proceedings of the 9th International Symposium on String Processing and
Information Retrieval (SPIRE), volume 2476, pages 241–247, London, UK, 2002. Springer-
Verlag. (4, 11, 12, 26)

[152] Gabriella Kazai and Thomas Roelleke. A Scalable Architecture for XML Retrieval. In
Fuhr et al. [82], pages 49–56. (22, 207)

[153] Latifur Khan and Yan Rao. A Performance Evaluation of Storing XML Data in Relational
Database Management Systems. In Proceedings of the 3rd International Workshop on Web
Information and Data Management (WIDM), pages 31–38, New York, NY, USA, 2001.
ACM. (4, 52)

[154] Pekka Kilpeläinen and Heikki Mannila. Ordered and Unordered Tree Inclusion. Society
for Industrial and Applied Mathematics (SIAM) Journal on Computing, 24(2):340–356, 1995.
(153)

[155] Donald Knuth. The Art of Programming, volume 1-3. Addison-Wesley, 1968. (153)

[156] Evangelos Kotsakis. Structured Information Retrieval in XML Documents. In Proceedings
of the 17th ACM International Symposium on Applied Computing (SAC), pages 663–667,
New York, NY, USA, 2002. ACM Press. (12, 26)

[157] Donald H. Kraft, Bruce W. Croft, David J. Harper, and Justin Zobel, editors. Proceedings
of the 24th ACM SIGIR International Conference on Research and Development in Information
Retrieval, New Orleans, Louisiana, United States, September 9-13 2001. ACM Press. (312,
324)

[158] Robert Krovetz. Viewing Morphology as an Inference Process. In Proceedings of the 16th
ACM SIGIR International Conference on Research and Development in Information Retrieval,
pages 191–202, New York, NY, USA, 1993. ACM. (71, 111)

[159] Robert Jeffrey Krovetz and W. Bruce Croft. Word Sense Disambiguation Using Machine-
Readable Dictionaries. SIGIR Forum, 23(SI):127–136, 1989. (111)

320 Bibliography

[160] Daniel T. Larose. Discovering Knowledge in Data – An Introduction to Data Mining. John
Wiley and Sons Inc, November 2004. (1)

[161] Ray R. Larson. Cheshire II at INEX: Using a Hybrid Logistic Regression and Boolean
Model for XML Retrieval. In Fuhr et al. [82], pages 18–25. (209)

[162] Vladimir I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. In Soviet Physics Doklady, volume 10, pages 707–710, 1966. (151)

[163] Wang Lian, David Wai lok Cheung, Nikos Mamoulis, and Siu-Ming Yiu. An Efficient
and Scalable Algorithm for Clustering XML Documents by Structure. IEEE Transactions
on Knowledge and Data Engineering, 16(1):82–96, 2004. (177)

[164] Shaorong Liu, Qinghua Zou, and Wesley W. Chu. Configurable Indexing and Ranking
for XML Information Retrieval. In Proceedings of the 27th ACM SIGIR International
Conference on Research and Development in Information Retrieval, pages 88–95. ACM Press,
2004. (22)

[165] Julie Beth Lovins. Development of a Stemming Algorithm. Mechanical Translation and
CDomputational Linguistics, 11(1–2):22–31, 1968. (70, 110)

[166] Anna Lubiw. Some NP-Complete Problems Similar to Graph Isomorphism. In SIAM
Journal of Computing, volume 10, pages 11–21, 1981. (151)

[167] Robert W. P. Luk, Alvin T. S. Chan, Tharam S. Dillon, and Hong Va Leong. A Survey of
Search Engines for XML Documents. In Proceedings of the ACM SIGIR Workshop on XML
and Information Retrieval, Athens, Greece, July 2000. (17, 18)

[168] Robert W. P. Luk, Hong Va Leong, Tharam S. Dillon, Alvin T. S. Chan, W. Bruce Croft,
and James Allan. A Survey in Indexing and Searching XML Documents. Journal of the
American Society for Information Science and Technology (JASIST), 53(6):415–437, 2002. (17,
26, 31)

[169] J. B. MacQueen. Some Methods for Classification and Analysis of Multivariate Observa-
tions. In L. M. LeCam and J. Neyman, editors, Proceedings of the 5th Berkeley Symposium
on Mathematical Statistics and Probability, volume 1, pages 281–297. Berkeley University
of California Press, 1967. (176, 192)

[170] Saadia Malik, Gabriella Kazai, Mounia Lalmas, and Norbert Fuhr. Overview of INEX
2005. In Fuhr et al. [90], pages 1–15. (237)

[171] Murali Mani, Dongwon Lee, and Makoto Murata. Normal Forms for Regular Tree
Grammars. Technical report, UCLA Computer Science Department, 2001. (151)

321

[172] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008. (42)

[173] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, Massachusetts, London, England, fifth printing
edition, 2002. (73, 76, 77, 78, 79, 80, 81, 84, 91, 92, 93, 94, 108, 111)

[174] Yosi Mass and Matan Mandelbrod. Retrieving the Most Relevant XML Component. In
Fuhr et al. [89], pages 53–58. (22)

[175] Yosi Mass and Matan Mandelbrod. Component Ranking and Automatic Query Refine-
ment for XML Retrieval. In Fuhr et al. [91], pages 134–140. (22)

[176] Yosi Mass, Matan Mandelbrod, Einat Amitay, David Carmel, Yoelle Maarek, and Aya
Soffer. JuruXML – An XML Retrieval System at INEX’02. In Fuhr et al. [82], pages
73–80. (208)

[177] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallas Quass, and Jennifer Widom.
Lore: A Database Management System for Semistructured Data. SIGMOD Record,
26(3):54–66, 1997. (52)

[178] Wolfgang Meier. eXist: An Open Source Native XML Database. In Erhard Rahm,
B. Chaudri, Mario Jeckle, and Rainer Unland, editors, Revised Papers from the NODe 2002
Web and Database-Related Workshops on Web, Web-Services, and Database Systems, volume
2593, pages 169–183, London, UK, 2003. Springer-Verlag LNCS. (53)

[179] Bruno T. Messmer and Horst Bunke. A New Algorithm for Error-Tolerant Subgraph
Isomorphism Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(5):493–505, 1998. (151)

[180] Andrei Mikheev. Periods, Capitalized Words, etc. Computational Linguistics, 28(3):289–
318, 2002. (67, 74, 83, 84)

[181] Elke Mittendorf and Peter Schäuble. Document and Passage Retrieval Based on Hidden
Markov Models. In Proceedings of the 17th ACM SIGIR International Conference on Research
and Development in Information Retrieval, pages 318–327, Dublin, Ireland, July 1994.
Springer-Verlag New York, Inc. (18)

[182] Muc. Message Understanding Conference (MUC-6). http://www.cs.nyu.edu/cs/

faculty/grishman/muc6.html, September 2006. (82)

[183] Muc. Message Understanding Conference (MUC-7). http://www.itl.nist.gov/iaui/
894.02/related_projects/muc/proceedings/muc_7_toc.html, September 2006. (82)

http://www.cs.nyu.edu/cs/faculty/grishman/muc6.html
http://www.cs.nyu.edu/cs/faculty/grishman/muc6.html
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.html
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.html

322 Bibliography

[184] Richard Myers, Richard C. Wilson, and Edwin R. Hancock. Bayesian Graph Edit
Distance. In Proceedings of the 10th International Conference on Image Analysis and Processing
(ICIAP), page 1166, Washington, DC, USA, 1999. IEEE Computer Society. (151)

[185] Gonzalo Navarro and Ricardo A. Baeza-Yates. Proximal Nodes: A Model to Query
Document Databases by Content and Structure. ACM Transactions on Information Systems,
15(4):400–435, October 1997. (13)

[186] Richi Nayak and Sumei Xu. XML Documents Clustering by Structures. In Fuhr et al.
[90], pages 432–442. (202, 203)

[187] Andrew Nierman and Hosagrahar Jagadish. Evaluating Structural Similarity in XML
Documents. In Proceedings of the 5th International Workshop on the Web and Databases
(WebDB), June 2002. (152, 155)

[188] John O’Connor. Retrieval of Answer-Sentences and Answer-figures from Papers by Text
Search. In Information Processing and Management, volume 11, pages 155–164, 1975. (18)

[189] John O’Connor. Answer-Passage Retrieval by Text Searching. Journal of the American
Society for Information Science, 31(4):227–239, July 1980. (18)

[190] Paul Ogilvie and Jamie Callan. Language Models and Structured Document Retrieval.
In Fuhr et al. [82], pages 33–40. (19)

[191] Richard A. O’Keefe and Andrew Trotman. The Simplest Query Language That Could
Possibly Work. In Fuhr et al. [89], pages 167–174. (23)

[192] openNLP Tagger. openNLP Tagger. http://opennlp.sourceforge.net, September
2006. (90)

[193] Chris D. Paice. Another Stemmer. SIGIR Forum, 24(3):56–61, 1990. (71)

[194] Chris D. Paice. An Evaluation Method for Stemming Algorithms. In Proceedings of
the 17th ACM SIGIR International Conference on Research and Development in Information
Retrieval, pages 42–50, New York, NY, USA, 1994. Springer-Verlag New York, Inc. (71)

[195] Sukomal Pal. XML Retrieval – A Survey. Technical report, Indian Statistical Institute,
Kolkata, Computer Vision and Pattern Recognition Unit (CVPR), June 30 2006. (12, 17,
18, 23, 26, 39)

[196] David D. Palmer. Tokenisation and Sentence Segmentation, pages 11–35. Volume 1 of Dale
et al. [61], 2000. (81)

http://opennlp.sourceforge.net

323

[197] David D. Palmer and Marti A. Hearst. Adaptive Multilingual Sentence Boundary
Disambiguation. Computational Linguistics, 23(2):241–267, June 1997. (66)

[198] Uchang Park. An Implementation of XML Documents Search System Based on Similarity
in Structure and Semantics. In Proceedings of the International Workshop on Challenges
in Web Information Retrieval and Integration (WIRI), pages 97–103. Yeojin Seo Duksung
Women’s University, April 08–09 2005. (151)

[199] Dan Pelleg and Andrew Moore. Accelerating Exact k-Means Algorithms with Geometric
Reasoning. In Proceedings of the 5th ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), pages 277–281, New York, NY, USA, 1999. ACM Press. (176,
192)

[200] Luuk Peters. Change Detection in XML Trees: A Survey. In Proceedings of the 4th Twente
Student Conference on IT, 2005. (xxii, 152, 153)

[201] Karen Pinel-Sauvagnat and Mohand Boughanem. A Survey on XML Focussed Compo-
nent Retrieval. In Large-Scale Semantic Access to Content (Text, Image, Video and Sound)
(RIAO), page Electronic Medium, Pittsburgh, USA, June 2007. Centre de Hautes Etudes
Internationales D’Informatique Documentaire (C.I.D.). (26)

[202] Benjamin Piwowarski, Georges-Etienne Faure, and Patrick Gallinari. Bayesian Networks
and INEX. In Fuhr et al. [82], pages 149–154. (20)

[203] Martin F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137, July 1980.
(70, 111)

[204] QTag. QTag. http://www.english.bham.ac.uk/staff/omason/software/qtag.html,
September 2006. (90)

[205] Adwait Ratnaparkhi. A Maximum Entropy Model for Part-of-Speech Tagging. In Eric
Brill and Kenneth Church, editors, Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 133–142, Somerset, New Jersey, 1996.
University of Pennsylvania, Association for Computational Linguistics. (92)

[206] Jonathan Robie, Joe Lapp, and David Schach. XML Query Language (XQL). http:

//www.w3.org/TandS/QL/QL98/pp/xql.html, September 1998. (23, 31)

[207] Thomas Rölleke and Norbert Fuhr. HySpirit – A Flexible System for Investigating
Probabilistic Logical Information Retrieval. Technical report, University of Dortmund,
Dortmund, Germany, 1997. (207)

http://www.english.bham.ac.uk/staff/omason/software/qtag.html
http://www.w3.org/TandS/QL/QL98/pp/xql.html
http://www.w3.org/TandS/QL/QL98/pp/xql.html

324 Bibliography

[208] Thomas Rölleke and Norbert Fuhr. Retrieving Complex Objects with HySpirit. In
J. Furner and D. J. Harper, editors, Proceedings of the 19th BCS-IRSG Colloquium on IR
Research, pages 32–43, Aberdeen, 1997. Robert Gordon University. (207)

[209] Thomas Rölleke, Ralf Lübeck, and Gabriella Kazai. The HySpirit Retrieval Platform. In
Kraft et al. [157], page 454. (207)

[210] Carl Sable and Ken Church. Using Bins to Empirically Estimate Term Weights for Text
Categorization. In Lillian Lee and Donna Harman, editors, Proceedings of the 6th Interna-
tional Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
58–66, Pittsburgh, US, 2001. Association for Computational Linguistics, Morristown,
US. (164)

[211] Gerard Salton. The SMART Retrieval System – Experiments in Automatic Document Process-
ing. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1971. (8, 21, 27)

[212] Gerard Salton, J. Allan, and Chris Buckley. Approaches to Passage Retrieval in Full
Text Information Systems. In Proceedings of the 16th ACM SIGIR International Conference
on Research and Development in Information Retrieval, pages 49–58. ACM Press, 1993. (18)

[213] Gerard Salton and Micheal E. Lesk. Computer Evaluation of Indexing and Text Process-
ing. Journal of the ACM, 15(1):8–36, 1968. (8, 21, 27)

[214] Gerard Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing.
Commun. ACM, 18(11):613–620, 1975. (8, 21)

[215] Christer Samuelsson. Morphological Tagging Based Entirely on Bayesian Inference. In
Robert Eklund, editor, Proceedings of the 9th Nordic Conference on Computational Linguistics
(NODALIDA), pages 225–238. Stockholm University, 1993. (92)

[216] Bilge Say. An Information-Based Approach to Punctuation. PhD thesis, Institute of Engi-
neering and Science af Bilkent University, 1998. (80)

[217] Bilge Say and Varol Akman. An Information-Based Treatment of Punctuation. In
Proceedings of the 2nd International Conference on Mathematical Linguistics (ICML), pages
93–94, Tarragona, Spain, 1996. (80)

[218] Anne Schiller, Simone Teufel, Christine Stöckert, and Christine Thielen. Guidelines für
das Tagging deutscher Textcorpora mit STTS. Technical report, Institut für maschinelle
Sprachverarbeitung, Stuttgart, 1999. (91)

[219] Torsten Schlieder and Holger Meuss. Result Ranking for Structured Queries against
XML Documents. In DELOS Workshop: Information Seeking, Searching and Querying in
Digital Libraries, Zurich, Switzerland, December 2000. (13)

325

[220] Torsten Schlieder and Holger Meuss. Querying and Ranking XML Documents. JASIST,
53(6):489–503, 2002. (13)

[221] Helmut Schmid. Probabilistic Part-Of-Speech Tagging Using Decision Trees. In Inter-
national Conference on New Methods in Language Processing, Manchester, UK, September
1994. (68, 92)

[222] Helmut Schmid. Improvements in Part-Of-Speech Tagging with an Application to
German. In Proceedings of the 14th International Conference on Computational Linguistics
(COLING), pages 172–176, 1995. (68, 92)

[223] Albrecht Schmidt, Martin L. Kersten, Menzo Windhouwer, and Florian Waas. Efficient
Relational Storage and Retrieval of XML Documents. In Selected papers from the 3rd
International Workshop WebDB 2000 on the World Wide Web and Databases (WebDB), volume
1997 of Lecture Notes in Computer Science, pages 137–150, London, UK, 2001. Springer-
Verlag. (43)

[224] Fabrizio Sebastiani. Machine Learning in Automated Text Categorisation. ACM
Computing Surveys, 34(1):1–47, 2002. (167, 168, 172)

[225] Stanley M. Selkow. The Tree-to-Tree Editing Problem. In Information Processing Letters,
volume 6, pages 184–186, 1977. (151, 177)

[226] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. DeWitt, and
Jeffrey F. Naughton. Relational Databases for Querying XML Documents: Limitations
and Opportunities. In Proceedings of the 25th International Conference on Very Large
Data Bases (VLDB), pages 302–314, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc. (53)

[227] Dennis Shasha and Kaizhong Zhang. Approximate Tree Pattern Matching. In Pattern
Matching Algorithms, pages 341–371. Oxford University Press, 1997. (151, 153)

[228] Kurt A. Shoens, Allen Luniewski, Peter M. Schwarz, James W. Stamos, and Joachim
Thomas. The Rufus System: Information Organization for Semi-Structured Data. In
Proceedings of the 19th International Conference on Very Large Data Bases (VLDB), pages
97–107, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. (52)

[229] Peter Shoubridge, Miro Kraetzl, and David Ray. Detection of Abnormal Change in
Dynamic Networks. In Proceedings of Information Decision and Control, pages 557–562.
IEEE Inc., 1999. (151)

[230] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of Similarity Measures
on Web-Page Clustering. In Proceedings of the 17th National Conference on Artificial

326 Bibliography

Intelligence: Workshop of Artificial Intelligence for Web Search (AAAI), pages 58–64, Austin,
Texas, USA, 30–31 July 2000. AAAI. (195, 196)

[231] Stanford Tagger. Stanford Tagger. http://nlp.stanford.edu/software/tagger.shtml,
September 2006. (90)

[232] Kuo-Chung Tai. The Tree-to-Tree Correction Problem. Journal of the Association for
Computing Machinery (ACM), 26(3):422–433, 1979. (151)

[233] Xavier Tannier, Alan Woodley, Shlomo Geva, and Marcus Hassler. Approaches to
Translating Natural Language Queries for Use in XML Information Retrieval Systems.
Technical Report 2006-400-008, Ecole Nationale Supérieure des Mines de Saint-Etienne,
Saint-Étienne, France, July 2006. (5, 32, 33)

[234] Tei. The Text Encoding Initiative (TEI). http://www.tei-c.org, September 2006. (82)

[235] Tei. The Text Encoding Initiative (TEI) Guidelines. http://www.tei-c.org/

Guidelines2/index.html, September 2006. (82)

[236] Anja Theobald and Gerhard Weikum. Adding Relevance to XML. In Selected papers from
the 3rd International Workshop WebDB 2000 on the World Wide Web and Databases (WebDB),
pages 105–124, London, UK, 2001. Springer-Verlag. (208)

[237] Anja Theobald and Gerhard Weikum. The Index-Based XXL Search Engine for Querying
XML Data with Relevance Ranking. In Proceedings of the 8th International Conference on
Extending Database Technology (EDBT), pages 477–495, London, UK, 2002. Springer-Verlag.
(23, 208)

[238] Richard M. Tong. Tarragon Consulting at INEX 2002: Experiments using the K2 Search
Engine from Verity. In Fuhr et al. [82], pages 88–94. (209)

[239] Kristina Toutanova and Christopher D. Manning. Enriching the Knowledge Sources
used in a Maximum Entropy Part-Of-Speech Tagger. In Proceedings of the 2000 Joint
SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora, pages 63–70, Morristown, NJ, USA, 2000. Association for Computational
Linguistics. (69)

[240] Andrew Trotman and Börkur Sigurbjörnsson. Narrowed Extended XPath I (NEXI). In
Fuhr et al. [91], pages 16–40. (23, 38)

[241] Andrew Trotman and Börkus Sigurbjörnsson. NEXI, Now and Next. In Fuhr et al. [91],
pages 41–53. (23)

http://nlp.stanford.edu/software/tagger.shtml
http://www.tei-c.org
http://www.tei-c.org/Guidelines2/index.html
http://www.tei-c.org/Guidelines2/index.html

327

[242] Dan Tufis and Oliver Mason. Tagging Romanian Texts: A Case Study for QTAG,
a Language Independent Probabilistic Tagger. In Proceedings of the 1st International
Conference on Language Resources and Evaluation (LREC), pages 589–596, May 28–30 1998.
(69, 92)

[243] Unicode. The Unicode Consortium. http://www.unicode.org, September 2006. (65, 88)

[244] UTF. The Unicode Standard, Unicode Transformation Format (UTF). http://www.

unicode.org/standard/standard.html, September 2006. (82, 88)

[245] Hans van Halteren, Jakub Zavrel, and Walter Daelemans. Improving Data Driven
Wordclass Tagging by System Combination. In Proceedings of the 36th Meeting on
Association for Computational Linguistics (COLING), pages 491–497, Morristown, NJ, USA,
1998. Association for Computational Linguistics. (92)

[246] Cornelis Joost van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Dept. of
Computer Science, University of Glasgow, London, England, 2 edition, 1979. (1, 175)

[247] Anne-Marie Vercoustre, Mounir Fegas, Saba Gul, and Yves Lechevallier. A Flexible
Structure-Based Representation for XML Document Mining. In Fuhr et al. [90], pages
443–457. (202, 203)

[248] Anne-Marie Vercoustre, James A. Thom, Alexander Krumpholz, Ian Mathieson, Peter
Wilkins, Mingfang Wu, Nick Craswell, and David Hawking. CSIRO INEX Experiments:
XML Search using PADRE. In Fuhr et al. [82], pages 65–72. (210)

[249] Ellen M. Voorhees. The Cluster Hypothesis Revisited. In Proceedings of the 8th ACM
SIGIR International Conference on Research and Development in Information Retrieval, pages
188–196, New York, NY, USA, 1985. ACM Press. (175)

[250] Ellen M. Voorhees. Natural Language Processing and Information Retrieval. In M. T.
Pazienza, editor, Information Extraction: Towards Scalable, Adaptable Systems, volume 1714,
pages 32–48, London, UK, 1999. LNCS Springer-Verlag. (63)

[251] Jason T. L. Wang, Kaizhong Zhang, and Gung-Wei Chirn. Algorithms for Approximate
Graph Matching. Information Sciences Information Computer Science, 82(1-2):45–74, 1995.
(151)

[252] Jason Tsong-Li Wang, Kaizhong Zhang, Karpjoo Jeong, and Dennis Shasha. A System
for Approximate Tree Matching. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 6(4):559–571, 1994. (151)

http://www.unicode.org
http://www.unicode.org/standard/standard.html
http://www.unicode.org/standard/standard.html

328 Bibliography

[253] Yuan Wang. X-Diff: A Fast Change Detection Algorithm for XML Documents. Master’s
thesis, University of Wisconsin, WI, USA, 2003. (151, 152)

[254] Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: A Fast Change Detection Algorithm
for XML Documents. In Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayara-
man, editors, Proceedings of the 19th International Conference on Data Engineering (ICDE),
Bangalore, India, March 5-8 2003. IEEE Computer Society. (151)

[255] Jonathan J. Webster and Chunyu Kit. Tokenization as the Initial Phase in NLP. In
International Center of Computational Logic (ICCL), editor, Proceedings of the 14th
International Conference on Computational Linguistics (COLING), volume 4, pages 1106–
1110, Morristown, NJ, USA, August 23-28 1992. University of Trier. (64, 65, 80)

[256] Ralph Weischedel, Richard Schwartz, Jeff Palmucci, Marie Meteer, and Lance Ramshaw.
Coping with Ambiguity and Unknown Words through Probabilistic Models. Comput.
Linguist., 19(2):361–382, 1993. (92)

[257] Ross Wilkinson. Effective Retrieval of Structured Documents. In Proceedings of the 17th
ACM SIGIR International Conference on Research and Development in Information Retrieval,
pages 311–317, Dublin, Ireland, 1994. Springer-Verlag New York, Inc. (12, 13, 18)

[258] Ross Wilkinson and Justin Zobel. Comparison of Fragmentation Schemes for Document
Retrieval. In Proceedings of the 3rd International Text Retrieval Conference (TREC), pages
81–84, 1994. (18)

[259] Alan Woodley, Marcus Hassler, Xavier Tannier, and Shlomo Geva. Natural Language
Processing and XML Retrieval. In Lawrence Cavedon and Ingrid Zukerman, editors,
Proceedings of the Australasian Language Technology Workshop (ALTW), pages 165–166,
Sidney, Australia, November 30 – December 1 2006. Australian Language Technology
Association. (31, 32)

[260] Tatsuo Yamashita and Yuji Matsumoto. Language Independent Morphological Analysis.
In Proceedings of the 6th International Conference on Applied Natural Language Processing,
pages 232–238, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. (66,
80)

[261] Yiming Yang. An Evaluation of Statistical Approaches to Text Categorization. Information
Retrieval, 1(1/2):69–90, 1999. (167)

[262] Yiming Yang and Xin Liu. A Re-Examination of Text Categorization Methods. In
Marti A. Hearst, Fredric Gey, and Richard Tong, editors, Proceedings of the 22nd ACM

329

International Conference on Research and Development in Information Retrieval (SIGIR), pages
42–49, Berkley, US, August 1999. ACM Press, New York, US. (164)

[263] Øystein Grøvlen. Natural Language Processing in Information Retrieval. Phd term
paper, Norwegian Institute of Technology, January 1995. (63)

[264] Mohammed J. Zaki and Charu C. Aggarwal. XRules: An Effective Structural Classifier
for XML Data. In Proceedings of the 9th International Conference on Knowledge Discovery
and Data Mining (SIGKDD), 2003. (150, 152)

[265] Kaizhon Zhang, Jason Wang, and Dennis Sasha. On the Editing Distance between
Undirected Acyclic Graphs. International Journal of Foundations of Computer Science, 7(13),
1995. (151)

[266] Kaizhong Zhang and Dennis Elliott Shasha. Simple Fast Algorithms for the Editing Dis-
tance between Trees and Related Problems. Society for Industrial and Applied Mathematics
(SIAM) Journal on Computing, 18(6):1245–1262, 1989. (151, 152, 153, 177)

[267] Zhongping Zhang, Rong Li, Shunliang Cao, and Yangyong Zhu. Similarity Metric for
XML Documents. In Workshop on Knowledge and Experience Management (FGWM), 2003.
(151, 152)

[268] Ying Zhao and George Karypis. Criterion Functions for Document Custering: Exper-
iments and Analysis. Technical Report TR 01–40, Department of Computer Science,
University of Minnesota, Minneapolis, MN, 2001. (195)

	Introduction
	Problem Identification and Motivations
	Overview of the Approach
	Thesis Outline

	Structured Document Retrieval: An Overview
	Introduction
	XML Document Format
	Related Work
	Database and Information Retrieval Perspective
	Fragment and Passage Retrieval
	Retrieval Models
	Retrieval Units
	Query Languages
	Performance

	Index Objects
	Content Representation and Weighing
	Querying and Ranking
	Query Language
	Result Presentation and Browsing
	Retrieval Evaluation
	Corpus
	Topics
	Metrics

	Summary

	Document Format, Storage, and Representation
	Introduction
	Related Work
	Typing of Structural Entities
	Storage

	The Most Simple XML Document Format
	Structure
	Metadata
	Content
	Typing of Structural Elements

	Storage
	Document Representation
	Static Term Space
	Dynamic Term Spaces
	An Example: Static versus Dynamic Term Spaces

	Summary

	Natural Language Text Representation
	Introduction
	Related Work
	Character Sets
	Tokenization
	Tagging Systems
	Stopword Filtering
	Stemming Systems

	Natural Language Oddities
	Difficulties Concerning Sentence Delimiters
	Abbreviation and Acronym Detection
	Numbers
	Special Formats
	Apostrophes
	Hyphenations
	Slashes and Other Special Characters

	Extended Tokenization
	Definitions of Token Concepts
	The Procedure of Token Typing
	JavaTok

	Tagging
	Stopword Filtering
	The Multi-Layered Stopword Model
	The Stopword Extraction Process
	Identification of Functional Stopwords
	Identification of Content-Related Stopwords
	Identification of Domain-Specific Stopwords
	Extending the Stopword List
	Coverage of the Generated Stopword List

	Stemming
	Summary

	Generation of Natural Language Resources Supporting Information Retrieval
	Introduction
	Experimental Setting and Procedure
	Definition of Basic Token Types for Single-Tokens
	Alphabetic Tokens (ALPHA)
	Numeric Tokens (NUMERIC)
	Entity Tokens (ENTITY)

	Definition of Complex Token Types for Multi-Tokens
	Automatic Rule Extraction
	Generating Single-Term Dictionaries
	Generating Multi-Term Dictionaries via Concordances
	Pattern Extraction Suited for Composite Nouns
	Pattern Extraction Suited for Named Entities
	Pattern Extraction Suited for Formulaic Speech

	Acronym Extraction and Expansion
	Summary

	Classification of XML Documents
	Introduction
	Related Work
	Tree Matching via Edit Distance
	Structure Matching
	Content Matching

	Tree Matching via Content Matrix
	Overview of k-NN
	Evaluation
	Experiment I - How Does k Affect the Accuracy?
	Experiment II - How Does the Training Data Affect the Accuracy?
	Experiment III - How Does the CAS Setting Affect the Accuracy?
	Comparison

	Future Extensions
	Summary

	Clustering of XML Documents
	Introduction
	Related Work
	Supertree Representation
	Creation of a Supertree
	Merging of Supertrees

	Similarity Computation
	Comparing Ordered Document Trees and Supertrees
	Comparing Unordered Document Trees and Supertrees
	Comparing Supertrees

	Clustering Approaches
	Overview of k-Means
	Overview of Hierarchical Clustering

	Evaluation
	Measures
	Experiment I - How Does the Parameter parent Affect the Purity and Entropy?
	Experiment II - How Does k Affect the Purity and Entropy?
	Experiment III - How Does the Training Data Affect the Purity and Entropy?
	Experiment IV - How Does CAS Setting Affect the Purity and Entropy?
	Comparison

	Conclusion

	Overview of the X-DOSE System
	Related Work
	HyREX
	HySpirit
	JuruXML
	XXL Search Engine
	K2 Search Engine from Verity
	Cheshire II
	PADRE

	Architecture of X-DOSE
	The Client
	Index Request
	Query Formulation
	Result Display
	Class Manager

	The Server
	Indexing
	Retrieval
	Classification
	Direct Data Requests

	Future Extensions
	Summary

	Evaluation of X-DOSE
	Experimental Settings
	Document Repository
	Topics
	Retrieval Tasks
	Evaluation Metrics

	Results
	Experiment I - Single-Term Index Performance
	Experiment II - Multi-Term Index Performance
	Experiment III - Combined Single-Term and Multi-Term Index Performance
	Experiment IV - Content and Structure
	Experiment V - Static Term Space versus Dynamic Term Spaces
	Experiment VI - The Effect of Content Importance ci
	Experiment VII - The Effect of the Generality Factor gf
	Experiment VIII - INEX 2005 Comparison
	Experiment IX - Clustering Performance
	Experiments not Conducted

	Summary

	Conclusion
	Concerns
	Contributions
	Theoretical Contributions
	Tool Aspects

	Lessons Learned
	Future Research Directions

	Appendix
	Extracted Stopword Lists
	Extracted Patterns Suited for Composite Nouns
	Extracted Patterns Suited for Named Entities
	Extracted Patterns Suited for Formulaic Speech
	Extracted Acronyms
	INEX Topics
	CO Topics
	COS Topics
	CAS Topics

	Evaluation Results - nxCG Performance of INEX Topics
	Experiment I - Single-Term Index Performance
	Experiment II - Multi-Term Index Performance
	Experiment III - Combined Single-Term and Multi-Term Index Performance
	Experiment IV - Content and Structure
	Experiment VI - The Effect of Content Importance ci
	Experiment VII - The Effect of the Generality Factor gf
	Experiment VIII - INEX 2005 Comparison

