
Text Preparation through
Extended Tokenization

Marcus Hassler, Günther Fliedl

marcus.hassler@uni-klu.ac.at, fliedl@ifit.uni-klu.ac.at
Alps-Adria University Klagenfurt

Abstract

Tokenization is commonly understood as the first step of any kind of nat-
ural language text preparation. The major goal of this early (pre-linguistic)
task is to convert a stream of characters into a stream of processing units
called tokens. Beyond the text mining community this job is taken for
granted. Commonly it is seen as an already solved problem comprising
the identification of word borders and punctuation marks separated by
spaces and line breaks. But in our sense it should manage language related
word dependencies, incorporate domain specific knowledge, and handle mor-
phosyntactically relevant linguistic specificities. Therefore, we propose rule-
based Extended Tokenization including all sorts of linguistic knowledge
(e.g., grammar rules, dictionaries). The core features of our implementa-
tion are identification and disambiguation of all kinds of linguistic markers,
detection and expansion of abbreviations, treatment of special formats, and
typing of tokens including single- and multi-tokens. To improve the quality
of text mining we suggest linguistically-based tokenization as a necessary
step preceeding further text processing tasks. In this paper, we focus on the
task of improving the quality of standard tagging.

Keywords: text preparation, natural language processing, tokenization, tag-

ging improvement, tokenization prototype

1 Introduction

Nearly all researchers concerned with text mining presuppose tokenizing as
first step during text preparation [1, 2, 3, 4, 5]. Good surveys about tok-
enization techniques are provided by Frakes, Baeza-Yates, and Ribeiro-Neto
in [6, 7], and Manning and Schütze in [8, pp.124–136]. But – as we know –
only very few reflect tokenization as a task of multi-language text process-
ing with far-reaching impact [9]. This involves language-related knowledge
about linguistically motivated and domain specific patterns on many levels
of linguistic analysis (i.e. sentence border disambiguation, composita iden-
tification, abbreviation handling) [10, 11].

Extended Tokenization in our sense does not only separate strings into
basic processing units, but also interprets and groups isolated tokens to
create higher level tokens. This is done by exploiting so-called token types
assigned through an elaborated machinery of heuristic and linguistically
motivated rules, and – if available – minimized dictionary knowledge. The
early identification of multi-tokens (see Sec. 2) partially covers the well
known “named entity recognition” task based on an empirically motivated
categorization of proper names as defined by MUC-61 and MUC-72, also
standardized through the TEI3 Guidelines4.

Our implementation (see Sec. 4) provides a language independent core
tokenizer which is easily adaptable for language specific needs through incre-
mental rule set expansion. Operating on plain text data only, it supports
any kind of regular expression pattern matching and several methods for
context dependent constraint checking. Thus, the complexity of subsequent
processing tasks (e.g., tagging, chunking) is reduced dramatically by early
made decisions.

Figure 1 shows where Extended Tokenization is located within the text
preparation and processing framework. First, raw texts are preprocessed
and segmented into textual units. This step comprises cleansing and filter-
ing (e.g., whitespace collapsing, stripping extraneous control characters) [12]
and removal of all kinds of structural or layout relevant markup (e.g., XML
tags). Then, Extended Tokenization segments the plain text into appropri-
ate processing units. Subsequent tasks like tagging are applied on the tok-

1Message Understanding Conference, http://www.cs.nyu.edu/cs/faculty/grishman/
muc6.html (03.03.2006)

2Message Understanding Conference, http://www.itl.nist.gov/iaui/894.02/
related projects/muc/proceedings/muc 7 toc.html (03.03.2006)

3Text Encoding Initiative, http://www.tei-c.org (03.03.2006)
4TEI Guidelines, http://www.tei-c.org/Guidelines2/index.html (03.03.2006)

Cleansing
Filtering

Extended

Tokenization

Further NLP
(tagging etc.)

Figure 1: The task of text preparation and processing

enized output and thus should be supported as far as possible (e.g., format
normalization, consistent terminology).

In Sec. 2 we give definitions of token concepts. Section 3 discusses the
procedure of token typing and describes our rule-based approach. The archi-
tecture and functionality of our online implementation JavaTok is covered
in Sec. 4. In the conclusion we outline some features of JavaTok with respect
to our theoretical considerations.

2 Definitions of Token Concepts

The most simple form of a token is the single-token. It is defined as a
character string not containing any non-printable or delimiting characters
(blank, tabulator, line-feed, new line, etc.), corresponding to the traditional
concept of a token. Examples of single-tokens are words, numbers, internet
addresses, most abbreviations, etc. See Guo [4, 13] and Mikheev [14] for
more examples.

Written texts also contain more complex language constructs that do not
fit into the singe-token concept. Such tokens may be specially formatted
using blanks (the standard delimiter for token boundaries) or belong to
semantically motivated groups of tokens. In this case the blank is part of
a token chain fixed together through interpretation.We define such tokens
containing token delimiter characters for formatting (e.g., blanks, tabs, new
lines, line feeds) as multi-tokens. Well known representants are compos-
ite nouns, special formats (’+43 463 2700-3531’), named entities (names,
locations, institutions), and idioms (formulas). Traditionally they have been
identified as a sequence of atomic tokens glued together during a later pro-
cessing phase - mainly using dictionary lookup. In our approach these tokens
are multi-tokens mainly through heuristic interpretation or, in other words,
they are tokens through rule-based typing.

The early treatment of multi-tokens as (semantic) concepts during text
preparation benefits the overall quality of data- and text-mining tasks. The
representation of a text using multi-tokens leads to better intermediate
results, hence structurally and (semantically) grouped tokens are treated
as atomic units. If subsequent tasks do not support multi-tokens, a simple
reinterpretation into standard tokens is possible.

3 The Procedure of Token Typing

As far as we know rule-based typing of tokens at this early stage of NLP has
not been introduced in the literature so far. In this paper typing of tokens is
defined as a pre-linguistic classification process that assigns type identifiers
to both, single-tokens and multi-tokens.

The typing process (see Alg. 1) distinguishes two levels: At the the first

level (1-3) token and sentence borders are identified. This step results in a
sequence of single-tokens, involving basic typing of tokens. At the second

level (4-6) contextually motivated reinterpretation (retyping) of tokens is
done to fit user-specified requirements. Beyond that rules for merging (resp.
splitting) of single-tokens (resp. multi-tokens) are applied recursively. The
aim is to improve the accuracy of preliminary first level tokenization.

Algorithm 1 Tokenization and typing of tokens

1: identify single-tokens
2: type single-tokens
3: split sentence end markers
4: reinterpret single-token types
5: merge and split tokens recursively
6: reinterpret all token types

The tokenization algorithm starts with basic text segmentation, separat-
ing strings into single-tokens (step 1 in Alg. 1) using standard delimiters
(blanks, tabs, new lines, line feeds). Each identified single-token is typed
(step 2 in Alg. 1) using a predefined set of basic token types. Examples of
basic types and subtypes are

• alphabetics Ta: no letters capitalized (Ta1), first letter capitalized
(Ta2), all letters capitalized (Ta3), mixed cases (Ta4) etc.

• numerics Tn: plain numbers (Tn1), numbers containing periods or
colons (Tn2) etc.

• punctuation marks Tp: sentence ending markers (Tp1), pairwise marks
lick brackets and quotes (Tp2), single sentence-internal marks like com-
mas (Tp3) etc.

• mixtures Tm: ending with sentence end marker (Tm1), ending with
hyphen (Tm2), starting with hyphen (Tm3), containing slashes/hyphens
(Tm4), containing numbers (Tm5) etc.

These basic types are assigned to tokens straightforward, utilizing a clas-
sification of characters into distinct categories (see Tab. 1).

During the next step punctuation marks are identified and separated (step
3 in Alg. 1). Only tokens typed as mixtures (Tm1) are investigated. If a token

Table 1: Example of character definitions

Category Characters

alpha abcdefghijklmnopqrstuvwxyzüäöß

alpha captial ABCDEFGHIJKLMNOPQRSTUVWXYZÜÄÖ

numeric 0123456789

sentence end .?!

punctuation ,:;"’()[]<>

hyphen -

delimiters \U0003 \U0009 \U000A \U000B \U000C \U000D \U0020

string does not match an entry in one of the repositories (e.g., abbreviations,
acronyms, regular expressions rules for single-token or multi-token typing),
the last character is split and builds a new token together with its cor-
responding token type (see 1 in Fig. 2). To assure the correctness of this
splitting operation basic context-specific rules are applied. A token ended
by a period and followed by a lower case token is not split, because the
period does not mark the end of a sentence (see 2 in Fig. 2).

1
… a sentence end. The next …

 Ta1 Ta1 Tm1 Ta2 Ta1

… a sentence end . The next …

 Ta1 Ta1 Ta1 Tp1 Ta2 Ta1

2
… the U.S. government has …

 Ta1 Tm4 Ta1 Ta1

… the U.S. government has …

 Ta1 Tm4 Ta1 Ta1

RuleID_001:

 IN: tin,1.type = Tm1 AND tin,2.type = Ta2

 OUT: tout,1.str = tin,1.str.substr(0,length-1) AND tout,1.type = Ta1 AND

 tout,2.str = tin,1.str.substr(length-1,length) AND tout,2.type = Tp1 AND

 tout,3.str = tin,2.str AND tout,3.type = tin,2.type

Figure 2: Tokenization examples

A set of user-defined token types is used to reinterpret and group (basic)
token types and strings (step 4-6 in Alg. 1). The user is enabled to define
custom types to support domain-specific needs. Such token types are sim-
ply expressed through strings, which are assigned to recognized tokens. The
definition of token types can be related to different sources of knowledge
about the motivation for token interpretation. This includes domain know-
ledge (i.e., structure of an organization, knowledge about data warehouses),
gazetteer knowledge (i.e., country names, river names), expert knowledge
(i.e., medicine, astronomy), and pure linguistic knowledge (i.e., morpholog-
ical and syntactical rules, subject of a sentence).

Examples of user-defined types are stopwords (U1), abbreviations (U2),
dates and times (U3), phone numbers (U4), email addresses (U5), a sequence
of capitalized single-tokens (U6, in many cases extended keywords) etc.
These types are identified by applying two strategies: First, tokens are com-
pared with an repository of reliable (string; token type) entries created
by a human expert or any kind of (semi-) automatic machinery. If no match
is found, an ordered list of rules is applied to process the sequence of tokens.
The rules include regular expression matching of token strings (see 3 in
Fig. 2), matching of token types (see 4 in Fig. 2), and combinations (see 5
and 6 in Fig. 2).

The examples in Fig. 2 and Fig. 3 also outline the rule syntax. Each
rule consists of a condition part (input sequence of typed tokens) and a
consequence part (output sequence of typed tokens). The numbered indices
of tokens indicate relative token positions. Our rule-based approach is based
on simple and pure linguistic functional interpretation of basic-token types
and token strings in a given context. Example types of rules may cover
morphological, syntactical, and general patterns like

• suffix identification of well-known endings (e.g., “-ly”, “-ness”).
• identification and reconcatenation of hyphenated words at line breaks
• sentence border disambiguation
• multi-token identification
• special character treatment (e.g., apostrophes, slashes, ampersand etc.)

4 JavaTok

This section describes the architecture of JavaTok 1.0, a free-configurable
tokenizer developed in JAVA. To cope with language dependent occurrence
of special characters (country specific characters like Slavic diacritics, French
accents, umlauts and sharp s in German, etc.), JavaTok enables a Uni-
code5-conform initialization and input/output processing. For the purpose
of convenient higher-level tokenization the following features are necessary:

• free configuration and adaptation (character definitions, tokenization
strategies)

• string replacements (abbreviation resolution, zero elimination, string
and thesaurus-like substitution of multiple length)

• user-defined token type definition
• rule-based token typing (credit card numbers, phone numbers, dates,

internet addresses, special IDs, . . .)

5http://www.unicode.org (30.03.2006)

3
… call +43 (0)462 2700 for …

 Ta1 Tm1 Tm1 Tn1 Ta1

4
… the Central Intelligence Agency is …

 Ta1 Ta2 Ta2 Ta2 Ta1

RuleID_003:

 IN: tin,1.type = Tm1 AND tin,2.type = Tm1 AND tin,3.type = Tn1 AND

 (tin,1.str tin,2.str tin,3.str).match(+[0-9]+\s\(0\)[0-9]+\s[0-9]+)

 OUT: tout,1.str = (tin,1.str tin,2.str tin,3.str) AND tout,1.type = U1

… call +43 (0)462 2700 for …

 Ta1 U4 Ta1

… the Central Intelligence Agency is …

 Ta1 U6 Ta1

RuleID_004:

 IN: tin,1.type = Ta2 AND tin,2.type = Ta2 AND tin,3.type = Ta2
 OUT: tout,1.str = (tin,1.str tin,2.str tin,3.str) AND tout,1.type = U6

5
… University of Klagenfurt …

Ta2 Ta1 Ta2

RuleID_005:

 IN: tin,1.type = Ta2 AND tin,2.str = “of“ AND tin,3.type = Ta2
 OUT: tout,1.str = (tin,1.str tin,2.str tin,3.str) AND tout,1.type = U6

… University of Klagenfurt …

U6

6 … Information Retrieval (IR) …

Ta2 Ta2 Tp2 Ta3 Tp2

RuleID_006:

 IN: tin,1.type = Ta2 AND tin,2.type = Ta2 AND tin,3.type = Tp2 AND tin,3.str = “(“ AND

 tin,4.type = Ta3 AND tin,5.type = Tp2 AND tin,5.str = “)“

 OUT: tout,1.str = (tin,1.str tin,2.str) AND tout,1.type = U6 AND

tout,2.str = tin,3.str AND tout,2.type = tin,3.type AND

tout,3.str = tin,4.str AND tout,3.type = U2 AND

tout,4.str = tin,5.str AND tout,4.type = tin,5.type

… Information Retrieval (IR) …

U6 Tp2 U2 Tp2

Figure 3: Tokenization rules

• pre-tagging functionality (based on token types)
• compound noun and proper name identification
• multi language support
• process statistics and runtime performance measurement
• multiple output formats

One of the main aims was to support web-based processing, easy integration
in existing software systems and good overall performance. An online version
of JavaTok is available at our NLP web portal6.

Extended Tokenization in our sense includes basic linguistic analysis per-
formed through rules described in the previous section. In case of ambiguity
JavaTok does not make assumptions or guesses. Uncertain token or sentence
borders are not further interpreted, marked, or split. The tokenizer behaves
the same way as standard tokenizers do, considering only separators defined
for splitting. This is because misinterpretation of tokens at an early stage
leads to poor overall performance of NLP systems. JavaTok also does not
carry out any kind of character conversion automatically, hence other tools
using the tokenizer output may loose important information (such as the
case of letters during tagging).

6http://nlp.ifit.uni-klu.ac.at (30.03.2006)

Output

The Red Cross is aka. RK .

The/Ta2 (Red/Ta2 Cross/Ta2)/INST is/Ta1 (also/Ta1 known/Ta1 as/Ta1)/ABBR RK/Ta3 ./Tp1

The/Ta2 (Red/Ta2 Cross/Ta2)/INST is/Ta1 aka./ABBR RK/Ta3 ./Tp1

The Red Cross is also known as RK .

The (Red Cross)/INST is aka. RK .

The (Red Cross)/INST is (also known as)/ABBR RK .

The/Ta2 Red/Ta2 Cross/Ta2 is/Ta1 aka./ABBR RK/Ta3 ./Tp1

The/Ta2 Red/Ta2 Cross/Ta2 is/Ta1 also/Ta1 known/Ta1 as/Ta1 RK/Ta3 ./Tp1

S M R

x

x

x x x

x x

x x

x

x x

Figure 4: Sample outputs: The Red Cross is aka. RK.

4.1 Sample Tokenization Outputs

In the example given in Fig. 4 the basic token types used are ’/Ta1’, ’/Ta2’,
’/Ta3’, ’/Tm1’, and ’/Tp1’ (see Sec. 3). The user-defined token types are
’/ABBR’ (abbreviation) and ’/INST’ (institution). The mode describes whether
single-token typing is enabled (S), whether multi-token typing is enabled
(M) and whether known abbreviations are to be replaced (R). The only
known abbreviation in the example is ’aka.’, standing for ’also known as’.
Also, ’Red Cross’ is a known institution. ’RK’ (Red Cross) is an unknown
abbreviation. Hence words do not contain uppercase letters in between, it
is marked as irregular by a rule.

4.2 Tagging Optimization Using JavaTok

Figure 5 shows the effect of Extended Tokenization on state-of-the-art tag-
ging outputs. For evaluation purposes we used three freely available taggers:
QTag7 developed at the University of Birmingham, POStaggerME8 avail-
able as part of the OpenNLP package provided by SourceForge, and Stanford

POS Tagger9 implemented by the Stanford NLP Group.
In cell (1) you see the initial input sentence comprising some of the pre-

viously discussed delimitation problems, which motivate our token typing
and multi-token concepts. Cell (2) contains QTag outputs, cell (3) POStag-

gerME outputs, and cell (4) Stanford POS Tagger outputs. Lines 2a), 3a)
and 4a) refer to standard tagging output, whereas lines 2b), 3b) and 4b)
show the improved tagger output including preceded Extended Tokenization
done by JavaTok. Underlines reflect differences between standard and Java-
Tok processed tagging input units. Bold written tags are changed through

7http://www.english.bham.ac.uk/staff/omason/software/qtag.html (30.03.2006)
8http://opennlp.sourceforge.net (39.03.2006)
9http://nlp.stanford.edu/software/tagger.shtml (30.03.2006)

1

a)

b)

Straight $n x n$ mapping doesn't fit into ... [5, 7].

Straight $n x n$ mapping doesn't fit into ... [5 , 7] .
JJ " NN NN VBG DOZ JJ IN CD NN CD , CD NN .

Straight $n x n$ mapping does not fit into ... [5, 7] .
JJ " NN DOZ XNOT VB IN CD NN .

Straight $n x n$ mapping doesn't fit into ... [5 , 7] .
JJ NN JJ NN NN RB VB IN : IN CD , CD NN .

Straight $n x n$ mapping does not fit into ... [5, 7] .
JJ NN NN VBZ RB VB IN : CD .

Straight $n x n$ mapping doesn't fit into ... [5 , 7] .
JJ NN LS FW VBG JJ NN IN : SYM CD , CD NN .

Straight $n x n$ mapping does not fit into ... [5, 7] .
JJ NN NN VBZ RB VB IN : CD .

2

a)

b)

3

a)

b)

4

Figure 5: Tagging improvements through Extended Tokenization

JavaTok-specific groupings and/or splittings, thus resulting in optimized
tagging inputs. Tagging improvement is achieved in two respects:

• Direct changes of tags through empirically more adequate input units
• Indirect changes of tags through changes of linguistic contexts

5 Conclusion

Extended Tokenization can be seen as one of the core steps of any kind of
text preparation. It is crucial for all following text processing tasks. To cope
with NLP difficulties we introduced the notion of Extended Tokenization,
including token definitions and user-defined token types. With our multi-
token concept we are able to classify, split and recombine tokens and token
chains to semantic units for further processing. Our rule-based token typing
approach carries out reinterpretation and substitution of token strings and
token types on two different levels.

Our implementation, JavaTok 1.0, allows proper treatment of both, gen-
eral and language-related tokenization difficulties. To circumvent early mis-
interpretation of tokens the tokenizer can leave segmentation decisions open,
avoiding hypothetically motivated decisions in ambiguous contexts. JavaTok
is optimized for reducing data and time complexity with respect to further
processing tasks (e.g., named entity recognition, tagging etc.). A short draft
about optimization of tagging output through our tokenization method is

outlined at the end of the paper, showing promising results. However, more
empirical work is certainly needed, together with an examination of methods
for automatic rule elicitation.

References

[1] Webster, J.J. & Kit, C., Tokenization as the initial phase in NLP. University
of Trier, volume 4, pp. 1106–1110, 1992.

[2] Fox, C., Lexical analysis and stoplists. pp. 102–130, 1992.
[3] Grefenstette, G. & Tapanainen, P., What is a word, what is a sentence?

problems of tokenization. The 3rd Conference on Computational Lexicography
and Text Research (COMPLEX’94), pp. 79–87, 1994.

[4] Guo, J., Critical tokenization and its properties. Computational Linguistics,
23(4), pp. 569–596, 1997.

[5] Barcala, F.M., Vilares, J., Alonso, M.A., Graa, J. & Vilares, M., Tokeniza-
tion and proper noun recognition for information retrieval. 3rd International
Workshop on Natural Language and Information Systems (NLIS ’02), pp.
246–250, 2002.

[6] Frakes, W.B. & Baeza-Yates, R., Information Retrieval: Data Structures and
Algorithms. Prentice Hall, Englewood Cliffs, NJ, USA, 1992.

[7] Baeza-Yates, R. & Ribeiro-Neto, B., Modern Information Retrieval. Addison
Wesley, ACM Press, New York: Essex, England, 1999.

[8] Manning, C.D. & Schütze, H., Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, Massachusetts: London, England, 5th
edition, 2002.

[9] Giguet, E., The stakes of multilinguality: Multilingual text tokenization in
natural language diagnosis. Proceedings of the 4th Pacific Rim International
Conference on Artificial Intelligence Workshop Future issues for Multilingual
Text Processing, Cairns, Australia, 1996.

[10] Jackson, P. & Moulinier, I., Natural Language Processing for Online Applica-
tions: Text Retrieval, Extraction and Categorisation. John Benjamins, mster-
dam, Netherlands: Wolverhampton, United Kingdom, 2002.

[11] Say, B. & Akman, V., An information-based approach to punctuation. Pro-
ceedings ICML ’96: Second International Conference on Mathematical Lin-
guistics, Tarragona, Spain, pp. 93–94, 1996.

[12] Palmer, D.D., Tokenisation and sentence segmentation. Handbook of Natural
Language Processing, eds. R. Dale, H. Moisl & H. Somers, Marcel Dekker,
Inc., pp. 11–35, 2000.

[13] Guo, J., One tokenization per source. Proceedings of the Thirty-Sixth Annual
Meeting of the Association for Computational Linguistics and Seventeenth
International Conference on Computational Linguistics, pp. 457–463, 1998.

[14] Mikheev, A., Periods, capitalized words, etc. Comput Linguist, 28(3), pp.
289–318, 2002.

