
Searching XML Documents – Preliminary Work

Marcus Hassler and Abdelhamid Bouchachia

Dept. of Informatics, Alps-Adria University, Klagenfurt, Austria
marcus.hassler@uni-klu.ac.at, hamid@isys.uni-klu.ac.at

Abstract. Structured document retrieval aims at exploiting the struc-
ture together with the content of documents to improve retrieval results.
Several aspects of traditional information retrieval applied on flat doc-
uments have to be reconsidered. These include in particular, document
representation, storage, indexing, retrieval, and ranking. This paper out-
lines the architecture of our system and the adaptation of the standard
vector space model to achieve focussed retrieval.

1 Introduction and Motivation

Traditionally, content-based retrieval systems rely either on the Boolean model or
the vector space model (VSM) [1–3] to represent the flat structure of documents
as a bag of words. Extensions of these models have been proposed, e.g., the
fuzzy Boolean model and knowledge-aware models. However, all of these indexing
models do ignore the organization of text and the structure of documents until
recently with the advent of “queriable digital libraries”.

XML documents have a standard structure defined by a DTD or XML
schema. While this structure provides documents with hierarchical levels of
granularity, and hence more precision can be achieved by means of focussed
retrieval, it does, however, imply more requirements on the representation and
retrieval mechanisms. With the new generation of retrieval systems, the two
aspects, the structure and the content, have to be taken into account. To mini-
mally achieve that in presence of nested structure like chapter-section-subsection-
paragraph, the traditional information retrieval techniques, e.g., the VSM, have
to be adapted to fit the context of structure-aware retrieval. To design such
systems, four basic aspects are of high importance:

(a) Representation: Textual content of the hierarchically structured documents
is generally restricted to the leave nodes. Hence, representation mechanisms
of the inner nodes content have to be defined.

(b) Retrieval granularity: A basic question is whether the indexing/retrieval unit
must be known ahead of time or is completely dynamically decided by the
user or eventually by the system itself.

(c) Ranking: Related to the first two aspects, a strategy for ranking the retrieved
results has to be decided.

(d) Result presentation: The way results are presented is a key issue [4–6] and
has to be considered early in the design of the system as part of requirements



engineering. Once ranked, the results are displayed showing their context of
appearance. Further functionality enabling browsing is required.

Taking these aspects into account, we developed a retrieval system. It is fully
implemented in Java and consists of three subsystems: indexing, retrieval and
RMI (Remote Method Invocation) communication server as depicted in Fig. 1.

R
M

I s
er

ve
r

Index Thread

DataMapper DataStorer DataIndexer
index(doc)

Content Storage
Relational
DataBase

NLP Analysis
Term Weighting

based on
Retrieval Unit

Retrieval
Result

computation

query(q)

Result
presentation

Result
refinement

Result selection

Query Thread

no

INDEXING

RETRIEVAL

R
M

I I
N

T
E

R
F

A
C

E


result(rs)

user

Query Result
caching

Query expansion
& extension

Result
cache lookup

yes

Relevance
Feedback

Result
cache

Fig. 1: Architecture of the system

The RMI server takes incoming requests for indexing and querying the system
and initiates a new thread for each call. The basic motivation behind this is to
achieve some degree of parallelism. The maximum number of parallel threads de-
pends on the performance of the hardware. From the software architecture point
of view, both index and query subsystem, use a pipelined pattern of processing
units (Fig. 1). Dashed components describe planned extensions. For portability
and tuning purposes, all subsystems are independently configurable via configu-
ration files. During indexing, documents are transformed into our XML schema
(DataMapper), stored in the database (DataStorer), and indexed for retrieval
(DataIndexer). As soon as a query is sent to the system it is analyzed by a query
thread. Documents in the database are matched against the query and relevant
elements1 are ranked in decreasing order.

In this paper, we will discuss the aspects (a)–(d), but with more focus is
more on the representation and the indexing/retrieval problem. First, in Sec. 2,

1 we use element and node interchangeable



book

editor title body

name surname abstract chapter chapter

TXT TXT

TXT

TXT

TXT

...

title author section section...TXT

title TXT
TXT TXT

TXT

Fig. 2: Example XML document

a generic schema for document representation is presented, onto which the XML
documents are mapped. Section 3 describes the underlying database model used
for storing the content and the corresponding representation. The most inter-
esting issues namely indexing and retrieval are discussed in Sec. 4 and Sec. 5
respectively. Section 7 concludes the paper.

2 Document Structure

The hierarchical structure for the content of documents is usually described by
means of a set of tags (e.g. chapter, section, subsection, etc.), as shown in Fig. 22.

In order to represent a collection of documents having different structure, we
apply an XSLT transformation to derive a common document format (schema).
This step eliminates structural ambiguities and resolves semantic relativism [7].

As illustrated in Fig. 3a, we introduce a general document format (defined
through XML schema) that consists of only three main elements: DOC (docu-
ment), SEC (section) and FRA (fragment). The DOC element defines the root of
the document. SEC is the basic structural element of a document. By recursively
defining SEC (e.g., section) as either containing raw content FRAs (e.g., para-
graphs) and/or made up of other SECs (e.g., subsections), the depth of nested
structures is unlimited. To define smallest retrievable units for indexing and
retrieval, we rely on fragments (FRAs). They stand for the leaf nodes in our doc-
ument schema (see Fig. 3a). Note that if a query refers to another tag not in the
set {DOC, SEC, FRAGMENT}, this latter is interpreted as SEGMENT.

A node in an XML document is viewed as a tuple (metadata,content), where
metadata refers to descriptive information of the node itself, while content refers

2 This example will be used throughout the paper. It is important to point out that
the approach presented here is general, but we used the IEEE collection just to
illustrate the processing steps of the system. In other words, the system is collection-
independent and therefore portable.



Fra9 10

Doc1 36

Sec2 5

Fra3 4

Fra6 7 Sec8 25

Sec11 18 Sec19 24

Fra12 13

Fra14 15

Fra16 17

Fra20 21

Fra22 23

Sec26 31 Sec32 35

Fra27 28

Fra29 30

Fra33 34

(a) Transformed example

Sec8 25

Sec11 18 Sec19 24

metadata content

title

author

Fra9 10

(b) Metadata and Content
blocks

Fig. 3: XML document representation

to the segment’s content, properly said (see Fig. 3b). Generally, the first type
of nodes requires database-supported (exact) match during retrieval, while the
second type is subject to partial matching (VSM).

2.1 Metadata

In addition to the content block, the metadata block of a node contains informa-
tion describing that node. Examples of metadata are author, year and keywords

for a DOC or the title for a SEC element. The fragment metadata block is used to
describe its actual content by means of content type, language, and possibly
title (figures, tables).

To allow a semantic interpretation of the content of an element, a type hier-
archy is proposed by Gövert [8]. An extension of the proposed type hierarchy for
metadata is depicted in Fig. 4. There, types are derived from a common base el-
ement. The first level in the hierarchy (bold) corresponds to database supported
data types. Further types in subsequent levels in the hierarchy have one of the
basic database types as supertype (e.g., PersonName is a String). In addition,
data types predicates for comparison are defined. This allows to process sec-
tion titles, phone numbers, and author names for instance. This type hierarchy
is used during parsing to optimize the storage efficiently. In addition, it helps
characterize the type of match required during retrieval.

2.2 Content

Generally, the content block of DOCs and SECs are defined as ordered lists of
further (sub)SECs and FRAs. The content block of FRAs is defined as bytecode or
empty. For indexing and retrieval purposes, content is interpreted based on its
type (metadata). Defining a fragment’s content as text block (paragraph) only
might be too restrictive. Therefore, a fragment in our sense refers to paragraphs,
enumerations, lists, figures, tables, formulas, images, sounds, videos, definitions,



Base

BlobDateStringNumber

PersonName Title Location

English German

ISBN
Number

Phone
Number

...

Fig. 4: Hierarchical metadata types

theorems, etc. On the other hand, a fragment (FRA) defines the smallest retriev-
able unit of a document. It can be understood as building block (elementary
content container). However, the granular unit is application specific and can be
set at wish to fit sentences as well as the whole text of a chapter.

From the structuring point of view, additional markup within a FRA’s content
might be needed. Our schema supports mathematical environments (using MATH)
and two types of links (using LINK), internal and external links. Internal links
are links within the same document, e.g., citations, figure/table references within
the text and the table of contents. External links refer to external resources,
including reference entries in the references section, references to email/internet
addresses and file references.

While the content block in DOCs and SECs is mandatory, in FRAs it is not.
This allows to include external content by its metadata only. An external source
attribute within the metadata block can be used to refer to the content some-
where else (e.g., a picture file). In contrast to SEC elements, which define their
own context based on their path, e.g., /DOC/SEC/SEC, fragments define a sep-
arate context. As to indexing and retrieval, a fragment in a section lies within
the same context as a fragment in a chapter or subsubsection. This difference is
important in the context of a dynamic term space, discussed in Sec. 5.3.

3 Storage

For efficiency purposes, we use a relational database to store the XML docu-
ments. The goal is to accelerate the access to various structural neighbors of
each node in the document (descendants, ancestors, and siblings). Being a tree,
an XML document can easily and unambiguously be traversed. Therefore, each
node is represented by its document ID and preorder/postorder. We depart from
the idea of preorder and postorder introduced in [9, 10], supporting non-recursive
ancestor/descendant detection and access. Table 1 shows an excerpt of the struc-
tural information of a document representation. Likewise, we designed another
for the corresponding content.

A structural entry is described by the tuple (docID, pre, post, parentID,
tagID, pathID). The root element has pre = 1 and parentID = 0 (no parent)



per definition. The attribute tagID is included for fast name lookup and access.
For the sake of performance, we added the elements path (XPath without po-
sitional information) pathID to circumvent recursive path generations by using
the parentID relation.

Table 1: Structural entries

docID pre post parentID tag path

d1 1 36 0 Doc /Doc

d1 2 5 1 Sec /Doc/Sec

d1 3 4 2 Fra /Doc/Sec/Fra

d1 6 7 1 Fra /Doc/Fra

d1 8 25 1 Sec /Doc/Sec

d1 9 10 8 Fra /Doc/Sec/Fra

d1 11 18 8 Fra /Doc/Sec/Sec

d1 12 13 11 Fra /Doc/Sec/Sec/Fra

The content of nodes (in particular leaf nodes) is stored in a separate table,
as suggested in [11]. However, the content of inner nodes can always be recovered
from their descendants as will be discussed in Sec. 4. Note that some content
entries do not have a corresponding representation entry (e.g. figures, tables).

To improve retrieval performance, metadata handling is completely shifted to
the database. This is achieved by grouping all metadata according to its element.
Instead of having multiple structural and content entries, a single row (docID,
pre, meta1, . . . , metan) is used to store all metadata together. Metadata of
nodes (DOC, SEC, FRA) are stored in separated but very similar tables as shown
in Tab. 2 for the case of sections. The reason of supporting only a single set
of SEC metadata is that all SEC elements (chapters, sections, subsections, etc.)
are assumed to have quite homogenous metadata (e.g., title). Although this
may lead to some ’NULL’ values (unavailable metadata for some elements) in
the database, the whole set can be accessed by a single select statement. This
simplifies and speeds up querying of metadata considerably. A global view is

Table 2: Metadata entries for SEC)

docID pre title author ...

d1 2 Introduction R. Smith

d1 8 XMl Retrieval J. Alf

d1 11 Granularity NULL

depicted in Fig. 5. Both, metadata and content entries, are optional. Additional
types of representations (e.g. semantic concepts, figure representations, etc.) can
easily be integrated.



-ID : int
-Server : String
-DataID : String
-Filename : String

Documents

-RequestTime : Date
-TransferTime : Date
-Status : String

Transfers

-Preorder : int
-Postorder : int

Structure

Metadata

Content
-inex_id : String
-inex_doi : String
-proc_title : String
-price : String
-issn : String
-copyright : String
-proc_month : String
-proc_year : String
-pages : String
-author : String
-title : String

documentMeta

-Title : String

sectionMeta

-Type : String
-Language : String
-Title : String

fragmentMeta

-Frequency : int

VSM
-Data : String

TXT

1

0..1

belongs

11..* downloaded

-ID : int
-Term : String

Terms

*

*

consists of

-ID : int
-Path : String
-Depth : int
-Count : int

Path

*

1

has

-ID : int
-Tag : String
-Count : int

Tag

1

*

has

fragmentStruct sectionStruct

1

0..1

describes
1

0..1

describes

0..1

1

describes

1

1..*

consists of
<<uses>>

1

1..*

-situated in
1..*

-belongs to
1..*

-stated
1..*

Count : int

localIDF

-termID : int
-pathID : int
-count : int

combinedIDF

Fig. 5: Conceptual database schema

4 Indexing

To represent texts as a vector of terms and their term frequencies, our natural
language processing (NLP) involves several subtasks containing tokenization,
tagging, term extraction, stemming, filtering and term frequency calculation.
Our implementation is based on abstract components. Taking advantage of the
the modularity aspect, different implementations of the same component can
be instantiated and selected during runtime. Hence, our system can easily be
adapted to process documents in other languages. Our prototype also involves
ready made-components like the tagger, and the stemmer.

During the indexing process, only the content of leaf nodes need to be parsed.
Their representation, a term frequency vector, is stored in the database (VSM
table). Consequent updates of the localIDF, combinedIDF table, and Terms

table are immediately done. These update operations are also carried out during
re-indexing or removal of documents.

The index of inner nodes is obtained by simply merging the index of its
descendants. This is done by summing up their term frequencies. This operation
is equivalent to process the concatenated contents of the descendant nodes. It
is also possible to store the result of the merge operation so that no index
computation is required later during the retrieval process. This reduces search
time, but increases the size of the database. It is important to stress that the
weight vectors are computed during retrieval using the available term frequency
vectors.

We define the context of a node as the set of all elements having the same
path (all chapters, all sections, etc.). In order to dynamically characterize both,
the granularity during indexing and retrieval, we applied a propagation of term
statistics (e.g. tf), in contrast to the weight propagation methodology [12]. In



addition, the inverse document frequency (idf) for each node is calculated dy-
namically based on the node’s context. Term weights are computed based on
the term frequencies and the idf in this context. This allows to perform focussed
retrieval on any level in the document tree. To achieve that in a given context,
tf of all nodes lying at this level will require tfs of their descendants. Using term
statistic propagation, the descendants’ tf are simply summed up. We avoid re-
cursive data accesses by exploiting preorder and postorder of document elements
(only one SQL select statement).

As to term weighing, we use different idfj,cs of the same term j in different
contexts c. This strategy weighs the same term with the same term frequency
differently depending on c (e.g. chapter vs. subsection). Clearly our approach
puts more attention on the actual context during retrieval. If the unit of retrieval
is defined explicitly, elements in this context are focussed and compared only
among them. Representations of elements in other contexts do not influence the
result.

To implement this idea, we use two tables (see Fig. 5): a table localIDF stores
tuples of the form (docID, pathID, termID, nj), where nj refers to the number
of elements containing term termID in the path pathID within a document
docID. Consider the example given in Tab. 3, the first Tab. 3a indicates that
the term “car” occurs twice in /DOC/SEC nodes of document d1. To calculate
the idfj,c of a term j in a context c, we have to define Nc and nj . Nc is the
number of nodes with pathID = c. Nc can simply be derived via the table
holding the structural entries (see Tab. 1). nj is given by counting the rows
containing pathID = c and termID = j. In the above example, this results
in an inverse document frequency for the term “car” in the node /DOC/SEC

of idfcar,/DOC/SEC = log 3

2
. This definition of idfj,c leads to different idfs in

different contexts.

Table 3: idf calculation

(a) Table localIDF (b) Table combinedIDF

docID path term nj

d1 /DOC/SEC car 2
d1 /DOC/SEC/SEC mouse 1

d2 /DOC/SEC car 1
d2 /DOC/SEC/SEC dog 1
d2 /DOC/SEC/SEC mouse 3

d3 /DOC/SEC water 1
d3 /DOC/SEC/SEC dog 2

path term n

/DOC/SEC car 3
/DOC/SEC water 1

/DOC/SEC/SEC mouse 4
/DOC/SEC/SEC dog 3

Since Tab. 3a is quite large, we introduced a summarized shortcut-table
combinedIDF Tab. 3b with the overall goal to reduce the time access to idf
values. Same paths associated with the same terms are precalculated (e.g. term
“car”). For the sake of dynamic document environments (adding, removing and
re-indexing), we still need the information provided by Tab. 3a to adjust the n



values correctly. In addition, all Nc values, the numbers of elements with the
same path, are stored in the Path table (see Fig. 5).

Given a particular context (e.g. /DOC/SEC), our indexing strategy allows on-
the-fly computation of the representations associated with these nodes (con-
sidered as documents). Hence, our indexing method stores only term frequency
vectors in the database; weight computation is totally executed on the fly during
the retrieval process. The advantages of this methodology are:

– It behaves exactly like the traditional models at the document level.
– There is no need for empirical parameters as augmentation weights.
– Elements of smaller granularity (of lower level) do not automatically have

sparser feature vectors (leading to smaller similarity), hence they define their
own context. Since the number of terms is at max the total number of terms
in the whole collection.

– Documents can dynamically be added, removed, and re-indexed, without
impacting the weights of other representations.

5 Retrieval

This section explains the retrieval process. In particular, it describes how and
which information is required by the system to answer a user query appropriately.
This includes formulation of the query, setting of specific parameters, matching,
filtering, and presentation of the result.

5.1 Query formulation

The actual query input is done via an input interface which allows to enter differ-
ent types of queries: KWD (keyword) and NLQ (natural language query, free text),
which are translated into INEX queries. The INEX query supports NEXI-like in-
puts. Hence, we distinguish between metadata and content, we adapted our query
parser to support both kinds of information. Similar to the about(path,terms)
syntax, we added a construct: meta(path,condition). This allows us, for ex-
ample, to efficiently deal with queries like: “return all documents written by
Einstein” using the command //DOC[meta(.,author like ’%Einstein%’)].

In order to avoid long and confusing single-line queries, we use chains of INEX
queries. In our opinion, this concept is also closer to the natural way of ques-
tioning, by successively refining the list of results. Each subquery result works
as a strict filter, allowing only elements of the same or smaller granularity to be
retrieved. This improves the performance without skipping searched elements.
Furthermore, we use these chains for reweighing elements regarding to a user-
defined generality factor (gf), described below. In addition to the INEX-query
chains, several query parameters can be specified by the user (see Fig. 6):

– Maximum results (maxRes): Defines the maximum number of returned
results ranging from 1 to MAXINT .



– Minimum similarity (minSim): Defines the minimum similarity of re-
turned results ranging from 0 to 1, truncating the list of results below a
given similarity threshold.

– Content importance (ci): Defines the importance of the content similarity
to calculate the retrieval status value (rsv). This parameter ranges from 0
(only meta similarity) to 1 (only content similarity). The final similarity is
computed as rsv = simCont ∗ ci + simMeta ∗ (1 − ci).

– Generality factor (gf): This parameter (∈ [0, 1]) influences the retrieval
granularity. The higher the parameter, the more importance of first sub-
queries, computed as simnew = simold ∗ gf + simnew ∗ (1 − gf).

– Result type (rt): Defines which kind of results we wish to obtain: thorough
or focussed (see Sec. 5.6).

Fig. 6: Query Interface

5.2 Search and Retrieval paths

The search path specifies which elements are to be investigated and matched
against the current query. In contrast, the retrieval path specifies which ele-
ments are to be returned to the user. Generally these two path are equal, e.g.
//SEC[about(.,wine)]. This means that the retrieval path is always the same



or more general as the search path. So first relevant documents, then relevant
sections within those documents, and at a last stage relevant fragments within
those sections are identified. Difficulties arise when relevant ancestor elements
contain smaller elements that are further specified. For instance, a query that
retrieves sections containing paragraphs about a certain topic is not easy given
the recursive structure that a section can have.

Our parser for NEXI-like queries implements the following strategy: if the
searched element satisfies the retrieval path, only the element itself is returned.
Otherwise, the closest parent satisfying the retrieval path condition is returned.
In all cases, at most one element is retrieved. So a query like //SEC[about(

./FRA,global warming)] searches all SEC elements at any level (retrieval paths)
containing FRA paragraphs about “global warming” and returns the most rele-
vant element. A more complex query is //(DOC|SEC)[about(./SEC,anything)].
Here only document or section elements containing sections about “anything”
are to be retrieved, not the sections themselves that are about “anything”.

5.3 Dynamic term space

In the context of structured documents, the idea of representing elements at
different structural levels within the same term space has to be reconsidered.
Assume a number of document sections S = {s1 . . . sn} containing a set of unique
terms Ts and a set of chapters C = {c1 . . . cm} containing a set of unique terms
Tc. Note the implicit relation between term space Ts and term space Tc: Ts ⊆
Tc. Let q be a query containing terms Tq addressing sections S and chapters
C. To calculate the similarity sim(si, q) between a section and a query, both
feature vectors have to be within the same term space. The same thing holds for
comparing chapters and the query sim(ci, q).

Neglecting the context, sections and chapters are represented in the same
(global) term space. As a consequence, the feature vectors of low level nodes
become sparser and their similarities compared to nodes of higher levels drop.
To overcome this problem, we adopted the concept of a “dynamic term space”.
In contrast to the global term space, and following the concept of context, nodes
in the same context generate a term space. Using a static term space improves
performance, but unfortunately decreases the similarity of low-level nodes com-
pared with higher ones. Reducing zero weighted elements in the feature vectors
leads to higher precision during the match of low-level nodes. The number of
different indexing representations (different contexts) is expected to be quite
limited. For instance, the mapped INEX collection does not exceed six struc-
tural levels (/DOC/SEC/SEC/SEC/SEC/FRA). During retrieval the term space for
each context is constructed once, so retrieval performance drops insignificantly.

5.4 Result computation

INEX queries are stated using keywords in the about(path,kwd1 kwd2 ...kwdn)

syntax. This syntax allows to express several different semantics of keywords that
have to be considered:



– information retrieval techniques

– +information +retrieval techniques

– information retrieval -techniques

– "information retrieval" techniques

– +"information retrieval" techniques

’+’ (MUST) and ’-’ (CANNOT) indicate whether a term has to be or should
not be present in an element. Based on this, a fast preselection is systematically
done on candidate elements. Hence, index terms are stemmed, also these terms
have to be for comparison.

More complex is the treatment of quoted keywords. Are the keywords books
and "books" equivalent? This depends on whether "books" should occur as it is
(noun in plural form), or should it be stemmed and treated so. It is obvious that
quoted expressions are particulary difficult to process. Consider "red cars".
The term red is an adjective, it is not included in the index. Furthermore, it is
possible that in another context (e.g. “Red Cross”), it is (part of) a proper noun
and, therefore, exists in the index. In our approach, we treat quoted keywords in
two steps: First, we treat them as unquoted, calculating the similarity as given.
Then, we apply a string matching strategy on the original text associated with
the element to sort the results.

Combinations of MUST/CANNOT and quoted expressions are treated as
if all terms within quotes are separately marked as MUST/CANNOT and an
initial result set is computed. This result is reduced to those node containing
exactly the quoted expression.

Note that the computed result consists of tuples of the form (docID, preorder,
postorder, simMeta, simCont). docID (document ID), preorder and postorder
come directly from the database. simMeta and simCont are the calculated meta
similarity and content similarity.

5.5 Ranking and result presentation

Ranking is the task by which retrieved elements are decreasingly ordered by their
relevance. Therefore, we use a combination of metadata and content similarity
to compute a retrieval status value rsv (see Sec. 5.1). The ranking process itself
is impacted strongly by the desired granularity. Note that this granularity is
either pre-specified or stated explicitly in the user query. For example, if the user
specifies the document level (context), say section, the system should return only
relevant sections. The similarity can be calculated using two strategies. The first
strategy is to match the query against sections with content aggregated from
its descendants. The second strategy, which we have considered, is to match the
query against the most representative fragment of each section.

After all desired elements are matched against the user query, the combined
similarity values metaSim and contSim are used for ranking. The results are
presented to the user as a sorted list in decreasing order (see Fig. 7). The user
is then able to select a particular result, enabling a display of whole document
in an explorer-like view (see Fig. 8). The document structure is presented as an



Fig. 7: Result Set

expandable tree, where the selected element is expanded and focused. Having
similarity values available on the screen, the document can be efficiently browsed.
Colors are used to reflect the degree of similarity of the matched elements.

5.6 Result filtering

In INEX 2004, two kinds of retrieval strategies, thorough and focussed, were
defined. Thorough retrieval returns all relevant elements of a document. Hence,
all ancestors of a relevant element are relevant to a certain degree. This may lead
to multiple result elements along the same path (e.g., a section and its contained
paragraphs).

Focussed retrieval, on the other hand, aims at returning only the most rel-
evant element along a path. Basically, it relies on two principles [13]: (a) if an
element is relevant to a certain degree, so must be its parent; (b) only one node
along a path of relevant elements is returned. Overlapping elements in the result
set are discarded. This strategy is implemented as post filtering process to refine
the result set. We rely on preorder and postorder to do this efficiently. In other
words, all low-ranked ancestors and descendants are discarded. This strategy
reduces the number of returned elements drastically.

5.7 Query Refinement

In most cases a final search result is achieved through iterative refinement of the
query. The number of results is reduced step by step by adding new information



Fig. 8: Result Browser

to the query. To enable such a feature, we allow the user to include a list of
preliminary results together with a query. If such a result is set within a query
it acts as a strict filter during query computation.

6 Initial Experiments

In the current evaluation, we will show only some initial experiments. Indeed,
only three retrieval runs were evaluated (CO and COS -both Thorough- and
SSCAS). The results are shown in Tab. 4 (nxCG) and Tab. 5 (ep/gr). The num-
ber between parentheses in each cell indicates the rank of our system compared
with the other participating systems. The results illustrate that our approach is
less competitive in the case of CO and COS tasks. In contrast to that, it is ranked
among the first 10 systems in the case of CAS.

Table 4: Metric: nxCG, Quantization: strict, Overlap=off

nxCG at CO COS SSCAS

10 0.0115(47) 0.0000(28) 0.3250(4)
25 0.0221(42) 0.0094(24) 0.3200(7)
50 0.0416(41) 0.0118(26) 0.3489(9)

To overcome the limitations observed in the case of CO and COS tasks, further
work is underway. It concerns various aspects related to document processing



Table 5: Metric: ep/gr, Quantization: strict, Overlap=off

CO COS SSCAS

0.0051(45) 0.0016(30) 0.1001(5)

(e.g. stop words filtering of metadata) and adjustment of the system parameters
(sec. 5.1). Additional experimental work with regard to Focused tasks is to be
done.

7 Conclusion

The paper described the basic tasks of an XML retrieval system. Details on
the methodology are provided. An initial experimental evaluation is already, but
only partly, conducted showing promising results. However, a thorough empirical
work is still needed along with some additional features of the system.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
ACM Press, New York, Essex, England (1999)

2. Salton, G., Lesk, M.E.: Computer evaluation of indexing and text processing.
Journal of the ACM 15 (1968) 8–36

3. Salton, G.: The SMART Retrieval System - Experiments in Automatic Document
Processing. Prentice Hall Inc., Englewood Cliffs, NJ (1971)

4. Grosjohann, K., Fuhr, N., Effing, D., Kriewel, S.: A user interface for XML docu-
ment retrieval. In: 32. GI-Jahrestagung. Springer (2002)

5. Grosjohann, K., Fuhr, N., Effing, D., Kriewel, S.: Query formulation and result
visualization for XML retrieval. In: Proceedings ACM SIGIR 2002 Workshop on
XML and Information Retrieval, ACM (2002)

6. Fuhr, N., Grosjohann, K., Kriewel, S. In: A Query Language and User Interface
for XML Information Retrieval. Volume 2818 of LNCS. Springer (2003) 59–75

7. Fuhr, N., Grosjohann, K.: XIRQL: A query language for information retrieval in
XML documents. In: Proc. of the 24th ACM SIGIR, ACM Press (2001) 172–180

8. Gövert, N.: Bilingual information retrieval with HyREX and Internet translation
services. In: Cross-Language Information Retrieval and Evaluation. Volume 2069
of LNCS. (2001) 237–244

9. Grust, T.: Accelerating XPath location steps. In: Proc. of the 2002 ACM SIGMOD,
ACM Press (2002) 109–120

10. Hiemstra, D.: A database approach to content-based xml retrieval. In: INitiative
for the Evaluation of XML Retrieval (INEX, Workshop), ERCIM (2003) 111–118

11. Florescu, D., Kossmann, D.: A performance evaluation of alternative mapping
schemes for storing XML data in a relational database. Technical report (1999)

12. Abolhassani, M., Fuhr, N.: Applying the divergence from randomness approach for
content-only search in XML documents. In: 26th European Conf. on Information
Retrieval Research (ECIR), Springer Verlag (2004)

13. Kazai, G., Lalmas, M., Rölleke, T.: Focussed structured document retrieval. In:
Proceedings of the 9 Retrieval (SPIRE 2002), Springer (2002) 241–247


